Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 180 x^{12} - 352 x^{11} + 598 x^{10} - 812 x^{9} + 816 x^{8} - 548 x^{7} + 116 x^{6} + 248 x^{5} - 194 x^{4} - 78 x^{3} + 432 x^{2} - 347 x + 213 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15251399075306833745561=23^{8}\cdot 41^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{45} a^{12} - \frac{2}{15} a^{11} - \frac{2}{15} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{16}{45} a^{7} + \frac{22}{45} a^{6} + \frac{8}{45} a^{5} - \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{11}{45} a^{2} + \frac{13}{45} a - \frac{4}{15}$, $\frac{1}{45} a^{13} + \frac{1}{15} a^{11} + \frac{4}{45} a^{10} - \frac{1}{9} a^{9} - \frac{1}{45} a^{8} + \frac{16}{45} a^{7} + \frac{1}{9} a^{6} - \frac{4}{15} a^{5} + \frac{4}{9} a^{4} + \frac{19}{45} a^{3} - \frac{8}{45} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{644355} a^{14} - \frac{7}{644355} a^{13} - \frac{988}{644355} a^{12} + \frac{6019}{644355} a^{11} - \frac{22294}{214785} a^{10} + \frac{21428}{214785} a^{9} - \frac{55712}{644355} a^{8} - \frac{96361}{644355} a^{7} + \frac{10438}{23865} a^{6} - \frac{5221}{71595} a^{5} - \frac{87346}{644355} a^{4} - \frac{169511}{644355} a^{3} - \frac{179627}{644355} a^{2} - \frac{293062}{644355} a + \frac{58732}{214785}$, $\frac{1}{297047655} a^{15} + \frac{223}{297047655} a^{14} + \frac{164018}{19803177} a^{13} - \frac{605549}{59409531} a^{12} - \frac{16337839}{297047655} a^{11} - \frac{205496}{6601059} a^{10} + \frac{40718593}{297047655} a^{9} + \frac{14124151}{297047655} a^{8} + \frac{59207293}{297047655} a^{7} + \frac{1666079}{11001765} a^{6} + \frac{134915561}{297047655} a^{5} + \frac{894032}{8028315} a^{4} + \frac{2221996}{19803177} a^{3} + \frac{38507533}{297047655} a^{2} - \frac{134040518}{297047655} a + \frac{19966229}{99015885}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36538.9775693 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 4.0.21689.1, 8.0.19286921561.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |