Normalized defining polynomial
\( x^{16} - 8 x^{15} + 188 x^{14} - 1176 x^{13} + 15318 x^{12} - 76984 x^{11} + 715900 x^{10} - 2900888 x^{9} + 21116169 x^{8} - 67859840 x^{7} + 403705168 x^{6} - 984991600 x^{5} + 4892167536 x^{4} - 8216449296 x^{3} + 34371364936 x^{2} - 30416805424 x + 107162335102 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15136091767428192657568213587984384=2^{62}\cdot 3^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2784=2^{5}\cdot 3\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2784}(1,·)$, $\chi_{2784}(2437,·)$, $\chi_{2784}(1217,·)$, $\chi_{2784}(521,·)$, $\chi_{2784}(1741,·)$, $\chi_{2784}(1045,·)$, $\chi_{2784}(697,·)$, $\chi_{2784}(349,·)$, $\chi_{2784}(869,·)$, $\chi_{2784}(2609,·)$, $\chi_{2784}(2089,·)$, $\chi_{2784}(173,·)$, $\chi_{2784}(1565,·)$, $\chi_{2784}(1393,·)$, $\chi_{2784}(1913,·)$, $\chi_{2784}(2261,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{318857418358168412276129} a^{14} - \frac{7}{318857418358168412276129} a^{13} - \frac{3132005431644924276093}{318857418358168412276129} a^{12} + \frac{18792032589869545656649}{318857418358168412276129} a^{11} - \frac{86756124523782722624824}{318857418358168412276129} a^{10} - \frac{57337094479725634338125}{318857418358168412276129} a^{9} + \frac{27950075364643912598789}{318857418358168412276129} a^{8} + \frac{120077205550174745580890}{318857418358168412276129} a^{7} + \frac{50189843429628722711633}{318857418358168412276129} a^{6} - \frac{157452875450855730966030}{318857418358168412276129} a^{5} + \frac{108338208316476418906601}{318857418358168412276129} a^{4} - \frac{74420643739841598318336}{318857418358168412276129} a^{3} - \frac{108095685229061439657936}{318857418358168412276129} a^{2} - \frac{157010354754049707549341}{318857418358168412276129} a + \frac{101002036539195327989544}{318857418358168412276129}$, $\frac{1}{25787127221313812342444772898273} a^{15} + \frac{40436761}{25787127221313812342444772898273} a^{14} - \frac{774434523691957708013223926089}{25787127221313812342444772898273} a^{13} + \frac{4907176225417556724931712921255}{25787127221313812342444772898273} a^{12} - \frac{618678318645937359538752040732}{25787127221313812342444772898273} a^{11} + \frac{276169321025485786397218008258}{25787127221313812342444772898273} a^{10} - \frac{3675325338486747102804530664592}{25787127221313812342444772898273} a^{9} + \frac{3890570663916133327513131872357}{25787127221313812342444772898273} a^{8} - \frac{5169483696191738858089112657736}{25787127221313812342444772898273} a^{7} + \frac{10896007362716729796532555644918}{25787127221313812342444772898273} a^{6} - \frac{7404541070619417593127085032365}{25787127221313812342444772898273} a^{5} + \frac{10258691992560839103337057720326}{25787127221313812342444772898273} a^{4} - \frac{9189090095743056386912224978534}{25787127221313812342444772898273} a^{3} + \frac{7908225838611981724876640836901}{25787127221313812342444772898273} a^{2} - \frac{7928242558013331175344986717349}{25787127221313812342444772898273} a + \frac{2395673068135712514315540436874}{25787127221313812342444772898273}$
Class group and class number
$C_{3}\times C_{944112}$, which has order $2832336$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| 3 | Data not computed | ||||||
| 29 | Data not computed | ||||||