Normalized defining polynomial
\( x^{16} - 4 x^{15} + 174 x^{14} - 684 x^{13} + 13793 x^{12} - 51308 x^{11} + 642284 x^{10} - 2150452 x^{9} + 18981756 x^{8} - 53702132 x^{7} + 359963494 x^{6} - 793737240 x^{5} + 4239589780 x^{4} - 6503562836 x^{3} + 28576785148 x^{2} - 22976725744 x + 85468811201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15085984382462633967616000000000000=2^{44}\cdot 5^{12}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2960=2^{4}\cdot 5\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2960}(1,·)$, $\chi_{2960}(517,·)$, $\chi_{2960}(2369,·)$, $\chi_{2960}(1481,·)$, $\chi_{2960}(1997,·)$, $\chi_{2960}(813,·)$, $\chi_{2960}(1553,·)$, $\chi_{2960}(149,·)$, $\chi_{2960}(1629,·)$, $\chi_{2960}(741,·)$, $\chi_{2960}(1257,·)$, $\chi_{2960}(2221,·)$, $\chi_{2960}(2737,·)$, $\chi_{2960}(2293,·)$, $\chi_{2960}(73,·)$, $\chi_{2960}(889,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{109} a^{12} - \frac{40}{109} a^{11} + \frac{42}{109} a^{10} - \frac{39}{109} a^{9} + \frac{14}{109} a^{8} - \frac{21}{109} a^{7} + \frac{11}{109} a^{6} + \frac{36}{109} a^{5} - \frac{43}{109} a^{4} - \frac{11}{109} a^{3} + \frac{25}{109} a^{2} - \frac{31}{109} a + \frac{4}{109}$, $\frac{1}{109} a^{13} - \frac{32}{109} a^{11} + \frac{6}{109} a^{10} - \frac{20}{109} a^{9} - \frac{6}{109} a^{8} + \frac{43}{109} a^{7} + \frac{40}{109} a^{6} - \frac{20}{109} a^{5} + \frac{13}{109} a^{4} + \frac{21}{109} a^{3} - \frac{12}{109} a^{2} - \frac{37}{109} a + \frac{51}{109}$, $\frac{1}{8849875142340094795743} a^{14} + \frac{632843817973878529}{8849875142340094795743} a^{13} + \frac{6328566686942560738}{2949958380780031598581} a^{12} + \frac{2523962178623335112950}{8849875142340094795743} a^{11} - \frac{1762966104116163645653}{8849875142340094795743} a^{10} + \frac{1702713026616022116028}{8849875142340094795743} a^{9} + \frac{936817142190997290353}{8849875142340094795743} a^{8} + \frac{2860643667466374107797}{8849875142340094795743} a^{7} + \frac{775125466050583717444}{8849875142340094795743} a^{6} + \frac{691843030816447371655}{8849875142340094795743} a^{5} + \frac{115094850995300837908}{8849875142340094795743} a^{4} + \frac{763242086095990748165}{2949958380780031598581} a^{3} - \frac{2039099366401787932105}{8849875142340094795743} a^{2} + \frac{3660495167149688554352}{8849875142340094795743} a + \frac{3439903806879883100770}{8849875142340094795743}$, $\frac{1}{115464584405688417283998440166778769437023} a^{15} - \frac{4779974396740169408}{115464584405688417283998440166778769437023} a^{14} - \frac{31764648804416296398870168436533211604}{38488194801896139094666146722259589812341} a^{13} - \frac{218373486166668385421503671792055892618}{115464584405688417283998440166778769437023} a^{12} + \frac{37459351967355377640470729614462355669932}{115464584405688417283998440166778769437023} a^{11} + \frac{21702304503444449242028952280084892394025}{115464584405688417283998440166778769437023} a^{10} + \frac{19956397295666936858301885592734030900035}{115464584405688417283998440166778769437023} a^{9} - \frac{12188214298692212928441073702634221132397}{115464584405688417283998440166778769437023} a^{8} + \frac{25645981983966218576546003893849638631981}{115464584405688417283998440166778769437023} a^{7} - \frac{56625583331952827749664133697435776138365}{115464584405688417283998440166778769437023} a^{6} - \frac{3323644926696004299369638896473198676934}{115464584405688417283998440166778769437023} a^{5} - \frac{1561519138669336032405547479923511073058}{38488194801896139094666146722259589812341} a^{4} + \frac{37656701494066982975236232721513883236833}{115464584405688417283998440166778769437023} a^{3} + \frac{42584049769100025284364307381247318890736}{115464584405688417283998440166778769437023} a^{2} - \frac{9343218194217163339652455444589783768474}{115464584405688417283998440166778769437023} a - \frac{16744142033045068994885525491870137552696}{38488194801896139094666146722259589812341}$
Class group and class number
$C_{40}\times C_{30160}$, which has order $1206400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $37$ | 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |