Normalized defining polynomial
\( x^{16} + 4 x^{14} + 118 x^{12} - 24 x^{11} + 1124 x^{10} + 840 x^{9} + 9255 x^{8} + 2592 x^{7} + 56524 x^{6} + 3360 x^{5} + 222298 x^{4} - 65208 x^{3} + 639668 x^{2} - 261816 x + 747358 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1506456681949104716472385536=2^{48}\cdot 3^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(624=2^{4}\cdot 3\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{624}(1,·)$, $\chi_{624}(259,·)$, $\chi_{624}(389,·)$, $\chi_{624}(77,·)$, $\chi_{624}(131,·)$, $\chi_{624}(469,·)$, $\chi_{624}(599,·)$, $\chi_{624}(157,·)$, $\chi_{624}(415,·)$, $\chi_{624}(545,·)$, $\chi_{624}(443,·)$, $\chi_{624}(103,·)$, $\chi_{624}(233,·)$, $\chi_{624}(287,·)$, $\chi_{624}(313,·)$, $\chi_{624}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{47} a^{12} - \frac{16}{47} a^{11} - \frac{10}{47} a^{10} - \frac{6}{47} a^{9} - \frac{7}{47} a^{8} - \frac{20}{47} a^{7} - \frac{19}{47} a^{6} + \frac{7}{47} a^{5} - \frac{14}{47} a^{4} + \frac{7}{47} a^{3} + \frac{10}{47} a^{2} + \frac{2}{47} a - \frac{16}{47}$, $\frac{1}{3431} a^{13} - \frac{5}{3431} a^{12} - \frac{844}{3431} a^{11} + \frac{307}{3431} a^{10} + \frac{1525}{3431} a^{9} + \frac{1031}{3431} a^{8} - \frac{1132}{3431} a^{7} - \frac{249}{3431} a^{6} + \frac{1003}{3431} a^{5} - \frac{53}{3431} a^{4} + \frac{1027}{3431} a^{3} + \frac{1099}{3431} a^{2} + \frac{523}{3431} a + \frac{153}{3431}$, $\frac{1}{78913} a^{14} - \frac{7}{78913} a^{13} + \frac{5}{3431} a^{12} + \frac{17690}{78913} a^{11} + \frac{15438}{78913} a^{10} + \frac{9442}{78913} a^{9} + \frac{17611}{78913} a^{8} + \frac{1500}{3431} a^{7} + \frac{7487}{78913} a^{6} + \frac{38894}{78913} a^{5} - \frac{12153}{78913} a^{4} + \frac{29705}{78913} a^{3} - \frac{23064}{78913} a^{2} + \frac{1005}{78913} a + \frac{18820}{78913}$, $\frac{1}{154067688291483677945949241} a^{15} - \frac{687232459076617612209}{154067688291483677945949241} a^{14} - \frac{17572803499688304367800}{154067688291483677945949241} a^{13} - \frac{933245836625728743770274}{154067688291483677945949241} a^{12} - \frac{37296829461460622490224714}{154067688291483677945949241} a^{11} + \frac{62022201783630869188835326}{154067688291483677945949241} a^{10} - \frac{30923541828879340621105349}{154067688291483677945949241} a^{9} - \frac{16591178036575488614094600}{154067688291483677945949241} a^{8} + \frac{43311159688850004091859590}{154067688291483677945949241} a^{7} + \frac{17650716855537133141639370}{154067688291483677945949241} a^{6} - \frac{96624032391983020721079}{3278035921095397403105303} a^{5} + \frac{53492803163625144745166424}{154067688291483677945949241} a^{4} - \frac{33469457474538307845161180}{154067688291483677945949241} a^{3} + \frac{49370295364144611758041882}{154067688291483677945949241} a^{2} + \frac{28664777482737997682856467}{154067688291483677945949241} a + \frac{70234998850730065856401313}{154067688291483677945949241}$
Class group and class number
$C_{3}\times C_{3}\times C_{240}$, which has order $2160$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |