Normalized defining polynomial
\( x^{16} - 8 x^{15} + 12 x^{14} + 40 x^{13} - 84 x^{12} - 136 x^{11} + 296 x^{10} + 440 x^{9} - 558 x^{8} - 872 x^{7} + 840 x^{6} + 1776 x^{5} + 396 x^{4} - 640 x^{3} - 176 x^{2} + 224 x + 98 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1504580577910444785664=2^{54}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4381606552811447071} a^{15} + \frac{1673752422143150250}{4381606552811447071} a^{14} + \frac{867089883514788323}{4381606552811447071} a^{13} - \frac{1811513299283159607}{4381606552811447071} a^{12} + \frac{81597790888136788}{625943793258778153} a^{11} - \frac{2038164184274029633}{4381606552811447071} a^{10} + \frac{504509341359863786}{4381606552811447071} a^{9} - \frac{1873367021190781369}{4381606552811447071} a^{8} - \frac{1996564559742881196}{4381606552811447071} a^{7} - \frac{351833829544463235}{4381606552811447071} a^{6} - \frac{20358877468922101}{625943793258778153} a^{5} - \frac{1565340642337187039}{4381606552811447071} a^{4} + \frac{1618727655418314767}{4381606552811447071} a^{3} - \frac{4529997898096767}{55463374086220849} a^{2} - \frac{747247817666089349}{4381606552811447071} a - \frac{232028684128544131}{625943793258778153}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{877142104773888771}{4381606552811447071} a^{15} - \frac{7773991535664563614}{4381606552811447071} a^{14} + \frac{17254143262311956443}{4381606552811447071} a^{13} + \frac{19971660650435002525}{4381606552811447071} a^{12} - \frac{12870593091980603786}{625943793258778153} a^{11} - \frac{42193756838843324397}{4381606552811447071} a^{10} + \frac{293656024126789690826}{4381606552811447071} a^{9} + \frac{136030562277115707832}{4381606552811447071} a^{8} - \frac{600762374311570432453}{4381606552811447071} a^{7} - \frac{256172836583380304885}{4381606552811447071} a^{6} + \frac{135059863488595573002}{625943793258778153} a^{5} + \frac{760261007801853160416}{4381606552811447071} a^{4} - \frac{290562969165764837714}{4381606552811447071} a^{3} - \frac{4149807697716971313}{55463374086220849} a^{2} + \frac{110947048320044832554}{4381606552811447071} a + \frac{14704990659143496875}{625943793258778153} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63593.3326838 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T315):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.0.2048.2, \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |