Normalized defining polynomial
\( x^{16} + 4 x^{14} + 22 x^{12} + 76 x^{10} + 118 x^{8} + 76 x^{6} + 22 x^{4} + 4 x^{2} + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(149587343098087735296=2^{48}\cdot 3^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{6}$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{6} a$, $\frac{1}{6} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{3} - \frac{1}{3} a$, $\frac{1}{18} a^{12} + \frac{2}{9} a^{6} + \frac{1}{6} a^{4} - \frac{1}{3} a^{2} - \frac{1}{9}$, $\frac{1}{18} a^{13} + \frac{2}{9} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{9} a$, $\frac{1}{54} a^{14} - \frac{1}{54} a^{12} + \frac{2}{27} a^{8} - \frac{1}{54} a^{6} + \frac{1}{6} a^{4} + \frac{11}{27} a^{2} + \frac{10}{27}$, $\frac{1}{54} a^{15} - \frac{1}{54} a^{13} + \frac{2}{27} a^{9} - \frac{1}{54} a^{7} + \frac{1}{6} a^{5} + \frac{11}{27} a^{3} + \frac{10}{27} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{3} a^{14} + \frac{19}{18} a^{12} + \frac{19}{3} a^{10} + \frac{59}{3} a^{8} + \frac{185}{9} a^{6} + \frac{5}{6} a^{4} - \frac{7}{3} a^{2} + \frac{5}{9} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30299.4171562 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T43):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-3}) \), 4.0.6144.1 x2, 4.2.18432.2 x2, 4.0.1728.1, \(\Q(\sqrt{-2}, \sqrt{-3})\), 4.0.432.1, 8.0.47775744.3, 8.0.339738624.10, 8.0.3057647616.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |