Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} - 24 x^{13} - 40 x^{12} + 144 x^{11} - 124 x^{10} - 152 x^{9} + 498 x^{8} - 400 x^{7} - 160 x^{6} + 432 x^{5} - 16 x^{4} - 144 x^{3} + 48 x^{2} + 56 x + 10 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(149587343098087735296=2^{48}\cdot 3^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{65} a^{14} - \frac{9}{65} a^{13} - \frac{9}{65} a^{12} - \frac{27}{65} a^{11} - \frac{5}{13} a^{10} + \frac{3}{65} a^{9} + \frac{1}{5} a^{8} - \frac{31}{65} a^{7} - \frac{17}{65} a^{6} + \frac{9}{65} a^{5} + \frac{5}{13} a^{4} + \frac{29}{65} a^{3} + \frac{2}{13} a^{2} - \frac{7}{65} a + \frac{5}{13}$, $\frac{1}{1159918498505} a^{15} + \frac{3954861526}{1159918498505} a^{14} - \frac{1264815672}{11957922665} a^{13} - \frac{233969980462}{1159918498505} a^{12} + \frac{2411528791}{17844899977} a^{11} + \frac{211758363613}{1159918498505} a^{10} - \frac{19235185642}{1159918498505} a^{9} + \frac{467771807589}{1159918498505} a^{8} - \frac{259196195852}{1159918498505} a^{7} - \frac{456213647131}{1159918498505} a^{6} - \frac{60757723443}{231983699701} a^{5} - \frac{47477162536}{1159918498505} a^{4} - \frac{3548866288}{17844899977} a^{3} + \frac{61496262428}{1159918498505} a^{2} + \frac{108310502275}{231983699701} a - \frac{79555017004}{231983699701}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{10665529404}{2391584533} a^{15} + \frac{89317860076}{2391584533} a^{14} - \frac{289371921460}{2391584533} a^{13} + \frac{27995782252}{183968041} a^{12} + \frac{291581869864}{2391584533} a^{11} - \frac{126660746710}{183968041} a^{10} + \frac{1937959423880}{2391584533} a^{9} + \frac{902157291657}{2391584533} a^{8} - \frac{5657160963408}{2391584533} a^{7} + \frac{6381355225672}{2391584533} a^{6} - \frac{661121108368}{2391584533} a^{5} - \frac{4385481652196}{2391584533} a^{4} + \frac{1818028598376}{2391584533} a^{3} + \frac{865992528004}{2391584533} a^{2} - \frac{839600657524}{2391584533} a - \frac{284010123271}{2391584533} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9194.19786468 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T34):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{6}) \), 4.0.512.1, 4.0.4608.1, 4.0.27648.1, \(\Q(i, \sqrt{6})\), 4.4.27648.1, 8.0.3057647616.6, 8.0.764411904.4, 8.0.339738624.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||