Properties

Label 16.0.14917095564...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{20}\cdot 5^{8}\cdot 41^{4}\cdot 359^{2}$
Root discriminant $28.08$
Ramified primes $2, 5, 41, 359$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1701

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![125, -750, 3189, -7042, 11148, -10634, 6769, -2688, -105, 1116, -741, 254, -18, -32, 19, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 19*x^14 - 32*x^13 - 18*x^12 + 254*x^11 - 741*x^10 + 1116*x^9 - 105*x^8 - 2688*x^7 + 6769*x^6 - 10634*x^5 + 11148*x^4 - 7042*x^3 + 3189*x^2 - 750*x + 125)
 
gp: K = bnfinit(x^16 - 6*x^15 + 19*x^14 - 32*x^13 - 18*x^12 + 254*x^11 - 741*x^10 + 1116*x^9 - 105*x^8 - 2688*x^7 + 6769*x^6 - 10634*x^5 + 11148*x^4 - 7042*x^3 + 3189*x^2 - 750*x + 125, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 19 x^{14} - 32 x^{13} - 18 x^{12} + 254 x^{11} - 741 x^{10} + 1116 x^{9} - 105 x^{8} - 2688 x^{7} + 6769 x^{6} - 10634 x^{5} + 11148 x^{4} - 7042 x^{3} + 3189 x^{2} - 750 x + 125 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(149170955649433600000000=2^{20}\cdot 5^{8}\cdot 41^{4}\cdot 359^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.08$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41, 359$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{14} - \frac{3}{22} a^{13} - \frac{3}{22} a^{12} + \frac{9}{22} a^{11} - \frac{7}{22} a^{10} + \frac{3}{11} a^{9} + \frac{3}{11} a^{8} - \frac{1}{2} a^{7} + \frac{2}{11} a^{6} + \frac{4}{11} a^{5} - \frac{1}{11} a^{4} + \frac{3}{22} a^{3} - \frac{2}{11} a^{2} + \frac{1}{11} a - \frac{9}{22}$, $\frac{1}{18134326502428815081640490} a^{15} - \frac{131307248331807482447078}{9067163251214407540820245} a^{14} + \frac{1669598774588825138331489}{18134326502428815081640490} a^{13} - \frac{73812076858267541829687}{18134326502428815081640490} a^{12} - \frac{44739817204047609610393}{210864261656149012577215} a^{11} - \frac{89855399708714168272061}{1648575136584437734694590} a^{10} + \frac{7795725406159287888901849}{18134326502428815081640490} a^{9} - \frac{6497071835431432716903759}{18134326502428815081640490} a^{8} - \frac{370600425269757850070061}{1813432650242881508164049} a^{7} + \frac{194422078362688527617759}{421728523312298025154430} a^{6} - \frac{7381195738716562670360181}{18134326502428815081640490} a^{5} + \frac{4015957882243529118583558}{9067163251214407540820245} a^{4} + \frac{3643473549016586377113344}{9067163251214407540820245} a^{3} - \frac{432824966167286004293516}{9067163251214407540820245} a^{2} - \frac{1310215847927537847051938}{9067163251214407540820245} a + \frac{1448508272316918714837535}{3626865300485763016328098}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 137149.671246 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1701:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8192
The 119 conjugacy class representatives for t16n1701 are not computed
Character table for t16n1701 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.1025.1, 8.0.67240000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.3$x^{8} + 2 x^{7} + 2 x^{6} + 16$$2$$4$$8$$C_2^3: C_4$$[2, 2, 2]^{4}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$41$41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
359Data not computed