Normalized defining polynomial
\( x^{16} - 4 x^{15} + 16 x^{13} + 2 x^{12} - 48 x^{11} + 52 x^{10} - 160 x^{9} + 894 x^{8} - 3328 x^{7} + 7648 x^{6} - 8592 x^{5} + 11948 x^{4} - 21104 x^{3} + 35376 x^{2} - 30640 x + 15076 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(149064245508482666116153344=2^{44}\cdot 3^{14}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{9} + \frac{1}{3}$, $\frac{1}{6} a^{10} + \frac{1}{3} a$, $\frac{1}{6} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{4}$, $\frac{1}{66} a^{14} - \frac{2}{33} a^{13} + \frac{2}{33} a^{12} - \frac{2}{33} a^{10} - \frac{2}{33} a^{9} + \frac{1}{22} a^{8} - \frac{3}{11} a^{6} - \frac{14}{33} a^{5} - \frac{7}{33} a^{4} + \frac{4}{33} a^{3} + \frac{2}{11} a^{2} + \frac{2}{33} a + \frac{2}{33}$, $\frac{1}{17652925701157343455809522} a^{15} + \frac{3165876278057345949571}{1961436189017482606201058} a^{14} + \frac{11483976356622988657394}{980718094508741303100529} a^{13} - \frac{25335216899791542152528}{802405713688970157082251} a^{12} - \frac{39807591651102592318427}{2942154283526223909301587} a^{11} - \frac{302431198691950326883681}{5884308567052447818603174} a^{10} - \frac{168429753329297225247545}{17652925701157343455809522} a^{9} + \frac{197759199792572816216}{20574505479204363002109} a^{8} + \frac{1061742856331695150907885}{2942154283526223909301587} a^{7} - \frac{1520538070676345478177566}{8826462850578671727904761} a^{6} - \frac{1286293995383206768828997}{2942154283526223909301587} a^{5} - \frac{702813650747145290790784}{2942154283526223909301587} a^{4} - \frac{1746958098442842324306899}{8826462850578671727904761} a^{3} - \frac{15397008917355978176859}{980718094508741303100529} a^{2} + \frac{1133634127625054424991894}{2942154283526223909301587} a - \frac{249124783271406451185043}{802405713688970157082251}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46243.1855624 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.(C_2\times D_4)$ (as 16T408):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^3.(C_2\times D_4)$ |
| Character table for $C_2^3.(C_2\times D_4)$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.13824.1, 4.4.4752.1, 4.4.50688.1, 8.0.190768545792.5, 8.0.763074183168.14, 8.8.23123460096.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |