Normalized defining polynomial
\( x^{16} + 288 x^{14} + 33696 x^{12} + 2052864 x^{10} + 69284160 x^{8} + 1269789696 x^{6} + 11428107264 x^{4} + 39182082048 x^{2} + 96031192321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14876562920830399091974866674384896=2^{64}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2336=2^{5}\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2336}(1,·)$, $\chi_{2336}(583,·)$, $\chi_{2336}(585,·)$, $\chi_{2336}(1167,·)$, $\chi_{2336}(1169,·)$, $\chi_{2336}(1751,·)$, $\chi_{2336}(1753,·)$, $\chi_{2336}(2335,·)$, $\chi_{2336}(291,·)$, $\chi_{2336}(293,·)$, $\chi_{2336}(875,·)$, $\chi_{2336}(877,·)$, $\chi_{2336}(1459,·)$, $\chi_{2336}(1461,·)$, $\chi_{2336}(2043,·)$, $\chi_{2336}(2045,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{26677} a^{8} + \frac{144}{26677} a^{6} + \frac{6480}{26677} a^{4} + \frac{13281}{26677} a^{2} - \frac{3464}{26677}$, $\frac{1}{8266908853} a^{9} - \frac{2405358238}{8266908853} a^{7} + \frac{2800477909}{8266908853} a^{5} + \frac{1614158520}{8266908853} a^{3} - \frac{2007020882}{8266908853} a$, $\frac{1}{8266908853} a^{10} + \frac{180}{8266908853} a^{8} + \frac{1961918275}{8266908853} a^{6} - \frac{436198514}{1180986979} a^{4} + \frac{222320584}{8266908853} a^{2} + \frac{2848}{26677}$, $\frac{1}{8266908853} a^{11} - \frac{3219768094}{8266908853} a^{7} - \frac{2857973185}{8266908853} a^{5} - \frac{140629023}{1180986979} a^{3} - \frac{1597666900}{8266908853} a$, $\frac{1}{8266908853} a^{12} - \frac{21384}{8266908853} a^{8} - \frac{2161342713}{8266908853} a^{6} - \frac{2703667333}{8266908853} a^{4} + \frac{3405800894}{8266908853} a^{2} - \frac{3687}{26677}$, $\frac{1}{8266908853} a^{13} - \frac{1635020739}{8266908853} a^{7} - \frac{2771792409}{8266908853} a^{5} - \frac{2039777554}{8266908853} a^{3} + \frac{2513663345}{8266908853} a$, $\frac{1}{8266908853} a^{14} - \frac{6625}{1180986979} a^{8} + \frac{170152589}{1180986979} a^{6} + \frac{383408639}{1180986979} a^{4} - \frac{561365202}{8266908853} a^{2} - \frac{2319}{26677}$, $\frac{1}{8266908853} a^{15} - \frac{270866514}{1180986979} a^{7} + \frac{244115674}{1180986979} a^{5} - \frac{819664117}{8266908853} a^{3} + \frac{814740586}{8266908853} a$
Class group and class number
$C_{6}\times C_{468672}$, which has order $2812032$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $73$ | 73.8.4.1 | $x^{8} + 138554 x^{4} - 389017 x^{2} + 4799302729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 73.8.4.1 | $x^{8} + 138554 x^{4} - 389017 x^{2} + 4799302729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |