Normalized defining polynomial
\( x^{16} - 2 x^{15} - x^{14} - 218 x^{13} + 148 x^{12} - 274 x^{11} + 20046 x^{10} + 9204 x^{9} + 59155 x^{8} - 735816 x^{7} - 1221602 x^{6} - 2904858 x^{5} + 7439752 x^{4} + 29813275 x^{3} + 57198013 x^{2} + 53884137 x + 26722273 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14874737901162615182149330162516201=47^{6}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{3}{11} a^{12} + \frac{1}{11} a^{11} + \frac{4}{11} a^{7} - \frac{5}{11} a^{6} - \frac{3}{11} a^{5} - \frac{2}{11} a^{4} + \frac{4}{11} a^{3} + \frac{5}{11} a^{2} - \frac{2}{11} a - \frac{5}{11}$, $\frac{1}{517} a^{14} - \frac{2}{517} a^{13} + \frac{140}{517} a^{12} + \frac{17}{517} a^{11} + \frac{22}{47} a^{10} + \frac{5}{47} a^{9} - \frac{117}{517} a^{8} - \frac{102}{517} a^{7} - \frac{23}{47} a^{6} - \frac{31}{517} a^{5} + \frac{69}{517} a^{4} - \frac{70}{517} a^{3} + \frac{28}{517} a^{2} - \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{12962103220039710456454986827742421171674798094769} a^{15} - \frac{9432123841902971415464503391429504732649441852}{12962103220039710456454986827742421171674798094769} a^{14} - \frac{339711804214453593428307540692981072000675093229}{12962103220039710456454986827742421171674798094769} a^{13} + \frac{5868799098223183028005043181705931159986599454405}{12962103220039710456454986827742421171674798094769} a^{12} + \frac{4250740574731059449729273380492451564720635765993}{12962103220039710456454986827742421171674798094769} a^{11} - \frac{405272832590494509373401065996586620435225008408}{1178373020003610041495907893431129197424981644979} a^{10} - \frac{6288971181195590647621588527232868787415316280101}{12962103220039710456454986827742421171674798094769} a^{9} + \frac{6403052011618234170334615640275590219240712018747}{12962103220039710456454986827742421171674798094769} a^{8} - \frac{965976199673236573570791725054785706508316692490}{12962103220039710456454986827742421171674798094769} a^{7} + \frac{48510641994454829959464842360566816468053288208}{997084863079977727419614371364801628590369084213} a^{6} - \frac{3249652944599882421743612587766710146945546364735}{12962103220039710456454986827742421171674798094769} a^{5} + \frac{421565893015885650392588159870182455728491975621}{12962103220039710456454986827742421171674798094769} a^{4} + \frac{1014332257007724124984150533222020830997877536779}{12962103220039710456454986827742421171674798094769} a^{3} + \frac{12436192924724965568162662429288770559879342867}{997084863079977727419614371364801628590369084213} a^{2} - \frac{135444582766883599333443499157212956931688039864}{275789430213610860775638017611540875993080810527} a - \frac{94333154519369219329383784972596298554861047846}{275789430213610860775638017611540875993080810527}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5340169342.87 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.2.132023.1, 4.0.148877.1, 4.2.6997219.1, 8.0.2594936907899933.1 x2, 8.0.48961073733961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 47 | Data not computed | ||||||
| 53 | Data not computed | ||||||