Normalized defining polynomial
\( x^{16} + 34 x^{14} + 412 x^{12} + 2344 x^{10} + 6865 x^{8} + 10714 x^{6} + 8734 x^{4} + 3388 x^{2} + 484 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14800683719141267324534784=2^{30}\cdot 3^{12}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{264} a^{12} - \frac{5}{132} a^{10} + \frac{5}{264} a^{8} - \frac{9}{44} a^{6} - \frac{49}{132} a^{4} - \frac{1}{6} a^{2} + \frac{1}{6}$, $\frac{1}{528} a^{13} - \frac{1}{528} a^{12} + \frac{17}{264} a^{11} - \frac{17}{264} a^{10} - \frac{13}{176} a^{9} + \frac{13}{176} a^{8} - \frac{9}{88} a^{7} + \frac{9}{88} a^{6} - \frac{5}{264} a^{5} + \frac{5}{264} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{12} a - \frac{1}{12}$, $\frac{1}{131472} a^{14} - \frac{169}{131472} a^{12} - \frac{125}{3984} a^{10} + \frac{1087}{131472} a^{8} + \frac{1889}{8217} a^{6} + \frac{8075}{21912} a^{4} - \frac{340}{747} a^{2} + \frac{265}{2988}$, $\frac{1}{262944} a^{15} - \frac{1}{262944} a^{14} - \frac{169}{262944} a^{13} + \frac{169}{262944} a^{12} + \frac{539}{7968} a^{11} - \frac{539}{7968} a^{10} - \frac{20825}{262944} a^{9} + \frac{20825}{262944} a^{8} + \frac{1889}{16434} a^{7} - \frac{1889}{16434} a^{6} + \frac{15379}{43824} a^{5} - \frac{15379}{43824} a^{4} - \frac{589}{1494} a^{3} + \frac{589}{1494} a^{2} - \frac{2723}{5976} a + \frac{2723}{5976}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15290.5686164 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T364):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{33}) \), 4.4.13068.1 x2, 4.4.4752.1 x2, \(\Q(\sqrt{3}, \sqrt{11})\), 8.8.2732361984.1, 8.0.3847165673472.16, 8.0.427462852608.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| 2.8.18.7 | $x^{8} + 8 x^{4} + 4$ | $4$ | $2$ | $18$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ | |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |