Normalized defining polynomial
\( x^{16} - 3 x^{15} + 1245 x^{14} - 929 x^{13} + 344716 x^{12} + 477002 x^{11} + 9678642 x^{10} + 527271324 x^{9} + 2476254439 x^{8} - 16644451521 x^{7} + 234290252130 x^{6} + 2895427880223 x^{5} + 1622671062847 x^{4} + 13345645225409 x^{3} + 709619381151297 x^{2} + 3629213187441572 x + 5423234506172099 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1476442430876140116899060702773874183614562881=37^{12}\cdot 157^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $665.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{63458345249222692163559694149646556317029514979012717687660392300507830842954516615674754252663350401780207644831229} a^{15} + \frac{9633186553354356584756146475855335920986373654906496292396313624961582401947605234819528836880139036688268219233182}{63458345249222692163559694149646556317029514979012717687660392300507830842954516615674754252663350401780207644831229} a^{14} + \frac{7952581121733879808093813715052279379476775551933497316006402918060598728112216623598609025576794630718651721627482}{21152781749740897387853231383215518772343171659670905895886797433502610280984838871891584750887783467260069214943743} a^{13} - \frac{964220987542939336793003937526960063707776096793495779888925904942364304533430513858982431581357263450987785965243}{21152781749740897387853231383215518772343171659670905895886797433502610280984838871891584750887783467260069214943743} a^{12} + \frac{1719280971198718221917307755012697141454790255965696598630488229655087372259331870307902747580945008396506373461136}{63458345249222692163559694149646556317029514979012717687660392300507830842954516615674754252663350401780207644831229} a^{11} - \frac{18927689688060528016976846408052185241212582485597901966647061426858948342565922014336553172329651781483579042701606}{63458345249222692163559694149646556317029514979012717687660392300507830842954516615674754252663350401780207644831229} a^{10} + \frac{9093470043071474692400128504904061233776140815802338927678806423166644797225977967092258540485718166077679446057292}{21152781749740897387853231383215518772343171659670905895886797433502610280984838871891584750887783467260069214943743} a^{9} + \frac{26283598001256714393839972350684337163772309142790690722438137843487715610797129420874807522351213244841796810892639}{63458345249222692163559694149646556317029514979012717687660392300507830842954516615674754252663350401780207644831229} a^{8} + \frac{3992267106772178090304089655028048381394078547424440998652430750523425634032434421866407825597020583033760253849341}{21152781749740897387853231383215518772343171659670905895886797433502610280984838871891584750887783467260069214943743} a^{7} - \frac{4799345276576686461371560710947706467600342209861157272646622951836373907557334029285752729346150468912617684682347}{21152781749740897387853231383215518772343171659670905895886797433502610280984838871891584750887783467260069214943743} a^{6} + \frac{57413732811617632306584024614761801122065160550328341584549023732815468231020293004478009249071744819523429741882}{21152781749740897387853231383215518772343171659670905895886797433502610280984838871891584750887783467260069214943743} a^{5} - \frac{2022929038299260471775191713040626142596772228965060279759496570208603724882602028999460532129569989672634732526902}{21152781749740897387853231383215518772343171659670905895886797433502610280984838871891584750887783467260069214943743} a^{4} + \frac{2125722619653377695081108702185560663845221365784667778496091725736580364037666258007255396421339251553102614290894}{63458345249222692163559694149646556317029514979012717687660392300507830842954516615674754252663350401780207644831229} a^{3} - \frac{11669807764797443178556477726323686332355828467950162557891575345315518373245368671690713663552235755080147604648776}{63458345249222692163559694149646556317029514979012717687660392300507830842954516615674754252663350401780207644831229} a^{2} + \frac{6016326105250816779294105813391040574269325651341872958661043491186961819894963495023683456445856672130662704274564}{63458345249222692163559694149646556317029514979012717687660392300507830842954516615674754252663350401780207644831229} a + \frac{18282524771832567024092190405237449401519187180977525747362502169017777644179971895662590334565832456837870257432122}{63458345249222692163559694149646556317029514979012717687660392300507830842954516615674754252663350401780207644831229}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{3196}\times C_{3196}$, which has order $326861312$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11997899.8215 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $Q_{16}$ |
| Character table for $Q_{16}$ |
Intermediate fields
| \(\Q(\sqrt{5809}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{157}) \), \(\Q(\sqrt{37}, \sqrt{157})\), 4.4.214933.1 x2, 4.4.912013.1 x2, 8.8.1138689997959361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $157$ | 157.4.3.1 | $x^{4} - 157$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 157.4.3.1 | $x^{4} - 157$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 157.4.3.1 | $x^{4} - 157$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 157.4.3.1 | $x^{4} - 157$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |