Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 56 x^{13} + 154 x^{12} - 560 x^{11} + 2224 x^{10} - 6368 x^{9} + 19101 x^{8} - 43784 x^{7} + 99796 x^{6} - 167312 x^{5} + 300592 x^{4} - 363464 x^{3} + 519304 x^{2} - 359648 x + 444959 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1473063013603449241600000000=2^{44}\cdot 5^{8}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(880=2^{4}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{880}(1,·)$, $\chi_{880}(769,·)$, $\chi_{880}(329,·)$, $\chi_{880}(461,·)$, $\chi_{880}(109,·)$, $\chi_{880}(529,·)$, $\chi_{880}(661,·)$, $\chi_{880}(89,·)$, $\chi_{880}(221,·)$, $\chi_{880}(549,·)$, $\chi_{880}(681,·)$, $\chi_{880}(749,·)$, $\chi_{880}(241,·)$, $\chi_{880}(309,·)$, $\chi_{880}(441,·)$, $\chi_{880}(21,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{604280639110594} a^{14} - \frac{7}{604280639110594} a^{13} + \frac{3818268358382}{302140319555297} a^{12} - \frac{45819220300493}{604280639110594} a^{11} - \frac{198283076643}{26273071265678} a^{10} + \frac{140671753679667}{604280639110594} a^{9} + \frac{5768849342961}{604280639110594} a^{8} - \frac{162556064533795}{604280639110594} a^{7} + \frac{244180632698583}{604280639110594} a^{6} - \frac{9430265120777}{26273071265678} a^{5} + \frac{177610058933215}{604280639110594} a^{4} + \frac{88982936276159}{604280639110594} a^{3} - \frac{9739609456983}{302140319555297} a^{2} + \frac{43300332098434}{302140319555297} a + \frac{50082656530647}{604280639110594}$, $\frac{1}{93378882881120980226} a^{15} + \frac{3359}{4059951429613955662} a^{14} - \frac{1217074076840647491}{5492875463595351778} a^{13} + \frac{9176557540319609565}{46689441440560490113} a^{12} - \frac{11017549426162544097}{93378882881120980226} a^{11} - \frac{428015162076525098}{2746437731797675889} a^{10} - \frac{8833689307942000855}{46689441440560490113} a^{9} - \frac{10074916531458407548}{46689441440560490113} a^{8} - \frac{21140876945515983691}{93378882881120980226} a^{7} + \frac{1062384912300264571}{2746437731797675889} a^{6} + \frac{12896622567640325336}{46689441440560490113} a^{5} + \frac{6469449223553102102}{46689441440560490113} a^{4} - \frac{16823044353808433424}{46689441440560490113} a^{3} + \frac{3429297789153083151}{93378882881120980226} a^{2} + \frac{1024360220128284137}{5492875463595351778} a - \frac{15206231421919154500}{46689441440560490113}$
Class group and class number
$C_{3}\times C_{3}\times C_{120}$, which has order $1080$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |