Normalized defining polynomial
\( x^{16} - 2 x^{15} + 23 x^{14} - 174 x^{13} + 1000 x^{12} + 496 x^{11} - 8597 x^{10} + 52088 x^{9} + 106831 x^{8} + 537290 x^{7} + 3491765 x^{6} + 12847940 x^{5} + 39264590 x^{4} + 74177940 x^{3} + 92969235 x^{2} + 82809270 x + 40054095 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(147108257121214334362554931640625=3^{4}\cdot 5^{14}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{4320221922} a^{14} + \frac{41190980}{2160110961} a^{13} - \frac{186946711}{4320221922} a^{12} - \frac{42725839}{1440073974} a^{11} - \frac{1051627325}{4320221922} a^{10} - \frac{101116013}{4320221922} a^{9} + \frac{670608523}{4320221922} a^{8} + \frac{799154494}{2160110961} a^{7} + \frac{392483617}{4320221922} a^{6} + \frac{712303585}{2160110961} a^{5} + \frac{1010828998}{2160110961} a^{4} - \frac{1914570463}{4320221922} a^{3} - \frac{1728354199}{4320221922} a^{2} + \frac{323479522}{720036987} a - \frac{15319796}{240012329}$, $\frac{1}{5361843573980573481085351909035320947024225868034} a^{15} - \frac{66044097542967604001895204975708316193}{5361843573980573481085351909035320947024225868034} a^{14} - \frac{374935833027577858151762477665724891751321859855}{5361843573980573481085351909035320947024225868034} a^{13} + \frac{2416880235674166664512258604514699249270847475}{595760397108952609009483545448368994113802874226} a^{12} + \frac{141357392506319567529679358318474158347765441890}{2680921786990286740542675954517660473512112934017} a^{11} - \frac{1075918041342549453846189786592130659756609482179}{5361843573980573481085351909035320947024225868034} a^{10} - \frac{27397838972329815779589244309963434749301751573}{2680921786990286740542675954517660473512112934017} a^{9} + \frac{185990092587158047264562830157547107235808099}{4695134478091570473805036697929352843278656627} a^{8} - \frac{1201861860691768742575873176931334479276519112417}{5361843573980573481085351909035320947024225868034} a^{7} - \frac{2538955409886355513002737272603669608517297027327}{5361843573980573481085351909035320947024225868034} a^{6} + \frac{24195518460451301431074842582289676422703781983}{2680921786990286740542675954517660473512112934017} a^{5} + \frac{1123020768186864731925455617909488552017202451108}{2680921786990286740542675954517660473512112934017} a^{4} - \frac{1086083355593484250356986792885849974163604720301}{5361843573980573481085351909035320947024225868034} a^{3} - \frac{29962041731869259867197338774517255592382230279}{893640595663428913514225318172553491170704311339} a^{2} - \frac{230428344582179793672743429474536859017026103591}{595760397108952609009483545448368994113802874226} a + \frac{23063086297691814974066979386478651904340252051}{99293399518158768168247257574728165685633812371}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{12}\times C_{12}$, which has order $2304$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1611809.57536 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), 4.4.3048625.1, 4.4.3048625.2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.9294114390625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $29$ | 29.8.7.1 | $x^{8} - 29$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.1 | $x^{8} - 29$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |