Normalized defining polynomial
\( x^{16} - 4 x^{15} + 18 x^{14} - 4 x^{13} + 57 x^{12} - 72 x^{11} + 1668 x^{10} - 1800 x^{9} + 8433 x^{8} - 13324 x^{7} + 23058 x^{6} - 22620 x^{5} + 14797 x^{4} - 6032 x^{3} + 1508 x^{2} - 112 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(146504330269581929271525376=2^{46}\cdot 113^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{376} a^{14} + \frac{35}{376} a^{13} - \frac{31}{376} a^{12} + \frac{57}{376} a^{11} - \frac{5}{47} a^{10} + \frac{57}{188} a^{9} + \frac{41}{94} a^{8} - \frac{23}{47} a^{7} + \frac{37}{376} a^{6} + \frac{135}{376} a^{5} + \frac{69}{376} a^{4} + \frac{117}{376} a^{3} + \frac{12}{47} a^{2} - \frac{15}{188} a - \frac{35}{94}$, $\frac{1}{1378543065734755627576771208} a^{15} - \frac{62616307152232100208425}{1378543065734755627576771208} a^{14} + \frac{158524722037709907338502541}{1378543065734755627576771208} a^{13} - \frac{89067371083763130079485}{33623001603286722623823688} a^{12} + \frac{59850359449097111898455539}{344635766433688906894192802} a^{11} - \frac{83008365217082765743325375}{344635766433688906894192802} a^{10} + \frac{99695099324467635910285537}{344635766433688906894192802} a^{9} - \frac{132768147230076979776792581}{344635766433688906894192802} a^{8} - \frac{647449766732471547053355395}{1378543065734755627576771208} a^{7} + \frac{389221353058760254931678259}{1378543065734755627576771208} a^{6} + \frac{163053240741051583438194841}{1378543065734755627576771208} a^{5} + \frac{642067949966762525464949935}{1378543065734755627576771208} a^{4} - \frac{108466571910580636394192065}{344635766433688906894192802} a^{3} + \frac{68122579156211852710301089}{344635766433688906894192802} a^{2} - \frac{112208654312354729927869905}{344635766433688906894192802} a - \frac{44608409896626375404919101}{344635766433688906894192802}$
Class group and class number
$C_{2}\times C_{18}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 498795.173587 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T330):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7232.1, 8.0.6051948658688.13, 8.4.6694633472.2, 8.4.189123395584.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $113$ | 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |