Normalized defining polynomial
\( x^{16} - 2 x^{15} - 34 x^{14} + 194 x^{13} - 132 x^{12} - 2562 x^{11} + 17177 x^{10} - 79564 x^{9} + 300789 x^{8} - 894616 x^{7} + 2128095 x^{6} - 4264318 x^{5} + 7120382 x^{4} - 9199270 x^{3} + 8457612 x^{2} - 4906712 x + 1422185 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1454293526857723611028217753777=17^{13}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{42} a^{12} - \frac{2}{21} a^{11} - \frac{5}{42} a^{10} + \frac{1}{21} a^{9} - \frac{5}{42} a^{8} - \frac{5}{21} a^{7} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} + \frac{4}{21} a^{4} - \frac{1}{7} a^{3} - \frac{5}{14} a^{2} - \frac{1}{2} a - \frac{4}{21}$, $\frac{1}{630} a^{13} + \frac{7}{30} a^{11} - \frac{8}{35} a^{10} + \frac{29}{210} a^{9} + \frac{3}{35} a^{8} + \frac{2}{63} a^{7} + \frac{16}{105} a^{6} - \frac{11}{315} a^{5} - \frac{92}{315} a^{4} + \frac{1}{210} a^{3} - \frac{23}{70} a^{2} + \frac{17}{315} a - \frac{20}{63}$, $\frac{1}{630} a^{14} - \frac{1}{210} a^{12} + \frac{47}{210} a^{11} - \frac{6}{35} a^{10} + \frac{23}{210} a^{9} + \frac{2}{9} a^{8} - \frac{7}{15} a^{7} + \frac{113}{630} a^{6} + \frac{311}{630} a^{5} + \frac{1}{10} a^{4} + \frac{1}{10} a^{3} + \frac{79}{630} a^{2} + \frac{23}{126} a + \frac{17}{42}$, $\frac{1}{13395907809729022032750281279147443890} a^{15} - \frac{511467892065974031492952514661187}{744217100540501224041682293285969105} a^{14} - \frac{82385222497319735103605095365769}{1339590780972902203275028127914744389} a^{13} - \frac{10359866949490979089030433445886589}{1488434201081002448083364586571938210} a^{12} - \frac{771996083962686538044177660436064681}{4465302603243007344250093759715814630} a^{11} - \frac{1804393254934205778166664833567132}{148843420108100244808336458657193821} a^{10} - \frac{143275089084508287598363215056683589}{6697953904864511016375140639573721945} a^{9} + \frac{11406921973555412623483068866816098}{2232651301621503672125046879857907315} a^{8} + \frac{728629699176747725032305411582391237}{2232651301621503672125046879857907315} a^{7} - \frac{5516944861804407044117518613223135079}{13395907809729022032750281279147443890} a^{6} + \frac{3685365798028883156236418961905801161}{13395907809729022032750281279147443890} a^{5} - \frac{663178846696792429634006466347416261}{6697953904864511016375140639573721945} a^{4} + \frac{125302954351247021094897081824033116}{1339590780972902203275028127914744389} a^{3} - \frac{825679809483145510329093061139886049}{2679181561945804406550056255829488778} a^{2} + \frac{92105393708003387110466366019136498}{956850557837787288053591519939103135} a + \frac{492658401631900772541456422242822313}{1339590780972902203275028127914744389}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 295149176.043 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 4.0.59177.1, 8.0.17204919837377.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.8 | $x^{8} + 4131$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.6.3 | $x^{8} - 17 x^{4} + 867$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| 59 | Data not computed | ||||||