Normalized defining polynomial
\( x^{16} - 4 x^{15} - 7 x^{14} + 75 x^{13} - 229 x^{12} + 115 x^{11} + 1296 x^{10} - 2939 x^{9} + 5710 x^{8} - 13835 x^{7} + 111463 x^{6} - 274658 x^{5} + 587698 x^{4} - 745842 x^{3} + 1436059 x^{2} - 1312335 x + 572661 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1454293526857723611028217753777=17^{13}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{27} a^{13} - \frac{4}{27} a^{12} - \frac{4}{27} a^{11} - \frac{2}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{3} a^{8} - \frac{11}{27} a^{7} + \frac{2}{27} a^{6} - \frac{2}{27} a^{5} + \frac{8}{27} a^{4} - \frac{4}{9} a^{3} - \frac{4}{27} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{5751} a^{14} - \frac{32}{5751} a^{13} - \frac{100}{639} a^{12} + \frac{92}{5751} a^{11} + \frac{283}{1917} a^{10} + \frac{1538}{5751} a^{9} - \frac{191}{5751} a^{8} - \frac{95}{5751} a^{7} + \frac{1175}{5751} a^{6} + \frac{532}{5751} a^{5} - \frac{326}{5751} a^{4} - \frac{1900}{5751} a^{3} - \frac{2768}{5751} a^{2} + \frac{319}{639} a + \frac{77}{639}$, $\frac{1}{489117439238479119147069154477944968895} a^{15} - \frac{516624742345034431537958661362207}{10869276427521758203268203432843221531} a^{14} - \frac{8411496542216170993319880980374049977}{489117439238479119147069154477944968895} a^{13} - \frac{80264293890114790600012992191478139483}{489117439238479119147069154477944968895} a^{12} + \frac{75512515236930926016133898168822937604}{489117439238479119147069154477944968895} a^{11} + \frac{4549676746370463892496482695377980511}{489117439238479119147069154477944968895} a^{10} - \frac{47495731823371539749077524658396293053}{97823487847695823829413830895588993779} a^{9} - \frac{27508024310014460016211384675321545638}{163039146412826373049023051492648322965} a^{8} - \frac{223047074906386439202787943700396973091}{489117439238479119147069154477944968895} a^{7} - \frac{228674787532607132174937957741804612304}{489117439238479119147069154477944968895} a^{6} - \frac{23990572630224084363135164359759094066}{163039146412826373049023051492648322965} a^{5} + \frac{4364580403317346909441029234207750713}{97823487847695823829413830895588993779} a^{4} - \frac{215571015914364146127613911262879381732}{489117439238479119147069154477944968895} a^{3} - \frac{21556314195596156062015863018514921103}{97823487847695823829413830895588993779} a^{2} + \frac{211364592889085145990349499360882971}{54346382137608791016341017164216107655} a + \frac{14504533468590303126007889242070051899}{54346382137608791016341017164216107655}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 502064925.746 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 4.0.59177.1, 8.0.17204919837377.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.4 | $x^{8} + 136 x^{4} + 7803$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 17.8.7.7 | $x^{8} + 51$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 59 | Data not computed | ||||||