Normalized defining polynomial
\( x^{16} - 3 x^{15} + 6 x^{14} - 21 x^{13} + 28 x^{12} + 77 x^{11} - 224 x^{10} + 25 x^{9} + 548 x^{8} - 809 x^{7} + 434 x^{6} - 91 x^{5} + 189 x^{4} - 308 x^{3} + 244 x^{2} - 144 x + 64 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(145383138964293121969=7^{14}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{6} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{16} a^{7} - \frac{3}{16} a^{6} - \frac{7}{32} a^{5} + \frac{1}{32} a^{4} - \frac{1}{32} a^{3} - \frac{5}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{32} a^{6} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} - \frac{9}{32} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{10} + \frac{3}{32} a^{7} - \frac{1}{8} a^{6} - \frac{3}{32} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{1408} a^{14} + \frac{5}{352} a^{13} - \frac{21}{1408} a^{12} + \frac{1}{176} a^{11} - \frac{3}{128} a^{10} - \frac{23}{704} a^{9} - \frac{83}{1408} a^{8} + \frac{29}{704} a^{7} - \frac{289}{1408} a^{6} - \frac{141}{704} a^{5} - \frac{125}{1408} a^{4} - \frac{123}{352} a^{3} + \frac{73}{352} a^{2} + \frac{39}{88} a - \frac{7}{22}$, $\frac{1}{656425088} a^{15} + \frac{32613}{328212544} a^{14} + \frac{6978339}{656425088} a^{13} - \frac{3578363}{328212544} a^{12} + \frac{3581771}{656425088} a^{11} + \frac{4923333}{82053136} a^{10} + \frac{12606141}{656425088} a^{9} - \frac{3405891}{82053136} a^{8} - \frac{18465885}{656425088} a^{7} + \frac{16540231}{82053136} a^{6} - \frac{117719229}{656425088} a^{5} - \frac{2153629}{29837504} a^{4} - \frac{41834}{466211} a^{3} - \frac{235363}{20513284} a^{2} - \frac{8498411}{20513284} a - \frac{938172}{5128321}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13134.7691742 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}, \sqrt{-11})\), 4.2.41503.1 x2, 4.0.3773.1 x2, 8.0.1722499009.1, 8.2.12057493063.1 x4, 8.0.1096135733.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |