Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} - 45 x^{13} + 105 x^{12} - 208 x^{11} + 345 x^{10} - 496 x^{9} + 621 x^{8} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(145220537353515625\)
\(\medspace = 5^{12}\cdot 29^{6}\)
|
| |
| Root discriminant: | \(11.82\) |
| |
| Galois root discriminant: | $5^{3/4}29^{1/2}\approx 18.006383777357115$ | ||
| Ramified primes: |
\(5\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 8.0.13140625.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3548501}a^{15}+\frac{1051588}{3548501}a^{14}-\frac{574847}{3548501}a^{13}-\frac{768308}{3548501}a^{12}-\frac{535660}{3548501}a^{11}-\frac{696506}{3548501}a^{10}+\frac{1012690}{3548501}a^{9}+\frac{1640755}{3548501}a^{8}-\frac{818145}{3548501}a^{7}-\frac{1015319}{3548501}a^{6}+\frac{140858}{322591}a^{5}+\frac{305639}{3548501}a^{4}-\frac{887802}{3548501}a^{3}-\frac{17445}{322591}a^{2}+\frac{524280}{3548501}a-\frac{898060}{3548501}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -\frac{7221127}{3548501} a^{15} + \frac{42282296}{3548501} a^{14} - \frac{124571768}{3548501} a^{13} + \frac{308985712}{3548501} a^{12} - \frac{716262939}{3548501} a^{11} + \frac{1406883783}{3548501} a^{10} - \frac{2304572476}{3548501} a^{9} + \frac{3265024438}{3548501} a^{8} - \frac{4029850629}{3548501} a^{7} + \frac{4089331012}{3548501} a^{6} - \frac{296995952}{322591} a^{5} + \frac{2086101904}{3548501} a^{4} - \frac{1171280635}{3548501} a^{3} + \frac{53034757}{322591} a^{2} - \frac{209656720}{3548501} a + \frac{34572096}{3548501} \)
(order $10$)
|
| |
| Fundamental units: |
$\frac{45514}{322591}a^{15}-\frac{205256}{322591}a^{14}+\frac{479288}{322591}a^{13}-\frac{1196276}{322591}a^{12}+\frac{2688904}{322591}a^{11}-\frac{4595379}{322591}a^{10}+\frac{6867582}{322591}a^{9}-\frac{8945250}{322591}a^{8}+\frac{9305330}{322591}a^{7}-\frac{7165218}{322591}a^{6}+\frac{3696305}{322591}a^{5}-\frac{560838}{322591}a^{4}-\frac{961932}{322591}a^{3}+\frac{887477}{322591}a^{2}-\frac{298941}{322591}a+\frac{234997}{322591}$, $\frac{4725815}{3548501}a^{15}-\frac{22724268}{3548501}a^{14}+\frac{55014279}{3548501}a^{13}-\frac{133314842}{3548501}a^{12}+\frac{304751566}{3548501}a^{11}-\frac{540283451}{3548501}a^{10}+\frac{805870399}{3548501}a^{9}-\frac{1067562097}{3548501}a^{8}+\frac{1194490749}{3548501}a^{7}-\frac{1009000590}{3548501}a^{6}+\frac{58451604}{322591}a^{5}-\frac{364617361}{3548501}a^{4}+\frac{191510279}{3548501}a^{3}-\frac{5970762}{322591}a^{2}+\frac{8822978}{3548501}a-\frac{1446884}{3548501}$, $\frac{10200933}{3548501}a^{15}-\frac{60440430}{3548501}a^{14}+\frac{177662321}{3548501}a^{13}-\frac{437838820}{3548501}a^{12}+\frac{1016883877}{3548501}a^{11}-\frac{1994330903}{3548501}a^{10}+\frac{3251349490}{3548501}a^{9}-\frac{4592345084}{3548501}a^{8}+\frac{5643486740}{3548501}a^{7}-\frac{5684303475}{3548501}a^{6}+\frac{406911111}{322591}a^{5}-\frac{2812691231}{3548501}a^{4}+\frac{1555257851}{3548501}a^{3}-\frac{69243646}{322591}a^{2}+\frac{263169158}{3548501}a-\frac{37443823}{3548501}$, $\frac{2011678}{3548501}a^{15}-\frac{10814494}{3548501}a^{14}+\frac{31670129}{3548501}a^{13}-\frac{81272286}{3548501}a^{12}+\frac{185931743}{3548501}a^{11}-\frac{364381815}{3548501}a^{10}+\frac{607917888}{3548501}a^{9}-\frac{868787514}{3548501}a^{8}+\frac{1082438309}{3548501}a^{7}-\frac{1120337004}{3548501}a^{6}+\frac{85072667}{322591}a^{5}-\frac{615406701}{3548501}a^{4}+\frac{347200145}{3548501}a^{3}-\frac{16145143}{322591}a^{2}+\frac{71593141}{3548501}a-\frac{12458065}{3548501}$, $\frac{12135118}{3548501}a^{15}-\frac{70638343}{3548501}a^{14}+\frac{200972465}{3548501}a^{13}-\frac{488981032}{3548501}a^{12}+\frac{1138478284}{3548501}a^{11}-\frac{2200939426}{3548501}a^{10}+\frac{3524421729}{3548501}a^{9}-\frac{4929545332}{3548501}a^{8}+\frac{5980182957}{3548501}a^{7}-\frac{5879279124}{3548501}a^{6}+\frac{407790200}{322591}a^{5}-\frac{2791555105}{3548501}a^{4}+\frac{1547710894}{3548501}a^{3}-\frac{66792007}{322591}a^{2}+\frac{230613679}{3548501}a-\frac{31997415}{3548501}$, $\frac{254763}{322591}a^{15}-\frac{1272991}{322591}a^{14}+\frac{3341829}{322591}a^{13}-\frac{8232846}{322591}a^{12}+\frac{18677610}{322591}a^{11}-\frac{34715037}{322591}a^{10}+\frac{54114416}{322591}a^{9}-\frac{73302162}{322591}a^{8}+\frac{85876673}{322591}a^{7}-\frac{79349525}{322591}a^{6}+\frac{56804287}{322591}a^{5}-\frac{32798350}{322591}a^{4}+\frac{18159773}{322591}a^{3}-\frac{8112383}{322591}a^{2}+\frac{2213182}{322591}a+\frac{45514}{322591}$, $\frac{14646001}{3548501}a^{15}-\frac{81606235}{3548501}a^{14}+\frac{229873328}{3548501}a^{13}-\frac{566620871}{3548501}a^{12}+\frac{1310455580}{3548501}a^{11}-\frac{2522146474}{3548501}a^{10}+\frac{4056989080}{3548501}a^{9}-\frac{5680230360}{3548501}a^{8}+\frac{6895586591}{3548501}a^{7}-\frac{6803081132}{3548501}a^{6}+\frac{479236119}{322591}a^{5}-\frac{3302435779}{3548501}a^{4}+\frac{1822324505}{3548501}a^{3}-\frac{78708056}{322591}a^{2}+\frac{284421959}{3548501}a-\frac{39332939}{3548501}$
|
| |
| Regulator: | \( 367.977318378 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 367.977318378 \cdot 1}{10\cdot\sqrt{145220537353515625}}\cr\approx \mathstrut & 0.234555692445 \end{aligned}\]
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, \(\Q(\zeta_{5})\), 4.0.3625.1, 8.0.13140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 8 siblings: | 8.4.88410125.1, 8.4.2210253125.1 |
| Degree 16 sibling: | 16.8.4885218876572265625.1 |
| Minimal sibling: | 8.4.88410125.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{6}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.4.4.12a1.4 | $x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ |
|
\(29\)
| 29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 29.2.2.2a1.1 | $x^{4} + 48 x^{3} + 580 x^{2} + 125 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 29.4.2.4a1.2 | $x^{8} + 4 x^{6} + 30 x^{5} + 8 x^{4} + 60 x^{3} + 233 x^{2} + 60 x + 33$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |