Properties

Label 16.0.145220537353515625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{12}\cdot 29^{6}$
Root discriminant $11.82$
Ramified primes $5, 29$
Class number $1$
Class group Trivial
Galois group $C_4\wr C_2$ (as 16T28)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -10, 42, -106, 208, -359, 535, -645, 621, -496, 345, -208, 105, -45, 18, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 18*x^14 - 45*x^13 + 105*x^12 - 208*x^11 + 345*x^10 - 496*x^9 + 621*x^8 - 645*x^7 + 535*x^6 - 359*x^5 + 208*x^4 - 106*x^3 + 42*x^2 - 10*x + 1)
 
gp: K = bnfinit(x^16 - 6*x^15 + 18*x^14 - 45*x^13 + 105*x^12 - 208*x^11 + 345*x^10 - 496*x^9 + 621*x^8 - 645*x^7 + 535*x^6 - 359*x^5 + 208*x^4 - 106*x^3 + 42*x^2 - 10*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 18 x^{14} - 45 x^{13} + 105 x^{12} - 208 x^{11} + 345 x^{10} - 496 x^{9} + 621 x^{8} - 645 x^{7} + 535 x^{6} - 359 x^{5} + 208 x^{4} - 106 x^{3} + 42 x^{2} - 10 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(145220537353515625=5^{12}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $11.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3548501} a^{15} + \frac{1051588}{3548501} a^{14} - \frac{574847}{3548501} a^{13} - \frac{768308}{3548501} a^{12} - \frac{535660}{3548501} a^{11} - \frac{696506}{3548501} a^{10} + \frac{1012690}{3548501} a^{9} + \frac{1640755}{3548501} a^{8} - \frac{818145}{3548501} a^{7} - \frac{1015319}{3548501} a^{6} + \frac{140858}{322591} a^{5} + \frac{305639}{3548501} a^{4} - \frac{887802}{3548501} a^{3} - \frac{17445}{322591} a^{2} + \frac{524280}{3548501} a - \frac{898060}{3548501}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{7221127}{3548501} a^{15} + \frac{42282296}{3548501} a^{14} - \frac{124571768}{3548501} a^{13} + \frac{308985712}{3548501} a^{12} - \frac{716262939}{3548501} a^{11} + \frac{1406883783}{3548501} a^{10} - \frac{2304572476}{3548501} a^{9} + \frac{3265024438}{3548501} a^{8} - \frac{4029850629}{3548501} a^{7} + \frac{4089331012}{3548501} a^{6} - \frac{296995952}{322591} a^{5} + \frac{2086101904}{3548501} a^{4} - \frac{1171280635}{3548501} a^{3} + \frac{53034757}{322591} a^{2} - \frac{209656720}{3548501} a + \frac{34572096}{3548501} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 367.977318378 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4\wr C_2$ (as 16T28):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_4\wr C_2$
Character table for $C_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, \(\Q(\zeta_{5})\), 4.0.3625.1, 8.0.13140625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$