Normalized defining polynomial
\( x^{16} - 300 x^{14} + 62812 x^{12} - 6666730 x^{10} + 468553114 x^{8} - 7498846700 x^{6} - 435429788627 x^{4} + 14564425105830 x^{2} + 320902833165121 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14508715371960087713296000000000000=2^{16}\cdot 5^{12}\cdot 41^{6}\cdot 661^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 661$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{2644} a^{10} - \frac{75}{661} a^{8} + \frac{339}{1322} a^{6} + \frac{777}{2644} a^{4} - \frac{41}{2644} a^{2} - \frac{1}{2}$, $\frac{1}{2644} a^{11} - \frac{75}{661} a^{9} + \frac{339}{1322} a^{7} + \frac{777}{2644} a^{5} - \frac{41}{2644} a^{3} - \frac{1}{2} a$, $\frac{1}{214965132} a^{12} + \frac{26801}{214965132} a^{10} + \frac{80051}{1747684} a^{8} + \frac{29621509}{214965132} a^{6} - \frac{4981413}{35827522} a^{4} + \frac{385}{1983} a^{2} + \frac{1}{12}$, $\frac{1}{214965132} a^{13} + \frac{26801}{214965132} a^{11} + \frac{80051}{1747684} a^{9} + \frac{29621509}{214965132} a^{7} - \frac{4981413}{35827522} a^{5} + \frac{385}{1983} a^{3} + \frac{1}{12} a$, $\frac{1}{5560553377028506309785932904074984946972} a^{14} + \frac{1120730865668432591375623619321}{5560553377028506309785932904074984946972} a^{12} - \frac{73156480573345847707922196843545327}{926758896171417718297655484012497491162} a^{10} - \frac{94379577630904549740261640576647738707}{5560553377028506309785932904074984946972} a^{8} - \frac{230973050548516506423910884011681380695}{463379448085708859148827742006248745581} a^{6} + \frac{3507665677073185986681664118207954825}{8412334912297286399071002880597556652} a^{4} + \frac{21273342922844625166937565580795}{77601702080156510821288908901863} a^{2} + \frac{34741805907735442767168204783}{78266971336516904509620684722}$, $\frac{1}{5560553377028506309785932904074984946972} a^{15} + \frac{1120730865668432591375623619321}{5560553377028506309785932904074984946972} a^{13} - \frac{73156480573345847707922196843545327}{926758896171417718297655484012497491162} a^{11} - \frac{94379577630904549740261640576647738707}{5560553377028506309785932904074984946972} a^{9} - \frac{230973050548516506423910884011681380695}{463379448085708859148827742006248745581} a^{7} + \frac{3507665677073185986681664118207954825}{8412334912297286399071002880597556652} a^{5} + \frac{21273342922844625166937565580795}{77601702080156510821288908901863} a^{3} + \frac{34741805907735442767168204783}{78266971336516904509620684722} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1063326857610895347440}{10998539035050410841158001044509951} a^{14} - \frac{1089462338727336445570159}{32995617105151232523474003133529853} a^{12} + \frac{236191550018005208802154966}{32995617105151232523474003133529853} a^{10} - \frac{9673756320421634864313047045}{10998539035050410841158001044509951} a^{8} + \frac{2262545976524844227821820148710}{32995617105151232523474003133529853} a^{6} - \frac{40946475944408938136923367502}{16639242110514993708257187661891} a^{4} - \frac{32715230479444885526518294}{1841914554132503639156177373} a^{2} + \frac{6077273342070251999355926}{2786557570548417003261993} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10569301888.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n864 |
| Character table for t16n864 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.26265625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||
| 661 | Data not computed | ||||||