Normalized defining polynomial
\( x^{16} + 571 x^{14} + 120029 x^{12} + 12863682 x^{10} + 933637909 x^{8} + 44271217964 x^{6} + 1432670949736 x^{4} + 28157888537938 x^{2} + 320902833165121 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14508715371960087713296000000000000=2^{16}\cdot 5^{12}\cdot 41^{6}\cdot 661^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 661$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{661} a^{10} - \frac{90}{661} a^{8} - \frac{273}{661} a^{6} - \frac{39}{661} a^{4} - \frac{134}{661} a^{2}$, $\frac{1}{661} a^{11} - \frac{90}{661} a^{9} - \frac{273}{661} a^{7} - \frac{39}{661} a^{5} - \frac{134}{661} a^{3}$, $\frac{1}{555326591} a^{12} - \frac{270439}{555326591} a^{10} - \frac{100885398}{555326591} a^{8} + \frac{122676934}{555326591} a^{6} + \frac{209743098}{555326591} a^{4} - \frac{3715}{20491} a^{2} - \frac{6}{31}$, $\frac{1}{555326591} a^{13} - \frac{270439}{555326591} a^{11} - \frac{100885398}{555326591} a^{9} + \frac{122676934}{555326591} a^{7} + \frac{209743098}{555326591} a^{5} - \frac{3715}{20491} a^{3} - \frac{6}{31} a$, $\frac{1}{192531761367172303269346543244168299799} a^{14} + \frac{127224608719634493309806488646}{192531761367172303269346543244168299799} a^{12} + \frac{4008783747754095985244027351824294}{6210701979586203331269243330457041929} a^{10} + \frac{90191609587116349417726372644225474176}{192531761367172303269346543244168299799} a^{8} + \frac{6526339533121550436796246306846142693}{17502887397015663933576958476742572709} a^{6} - \frac{60374216561217696210608651563623346}{291273466516145693297044694771812859} a^{4} + \frac{4637440763512032143514417255543}{10747701801267321991699372523959} a^{2} - \frac{3588973917846170955344615615}{16259760667575373663690427419}$, $\frac{1}{192531761367172303269346543244168299799} a^{15} + \frac{127224608719634493309806488646}{192531761367172303269346543244168299799} a^{13} + \frac{4008783747754095985244027351824294}{6210701979586203331269243330457041929} a^{11} + \frac{90191609587116349417726372644225474176}{192531761367172303269346543244168299799} a^{9} + \frac{6526339533121550436796246306846142693}{17502887397015663933576958476742572709} a^{7} - \frac{60374216561217696210608651563623346}{291273466516145693297044694771812859} a^{5} + \frac{4637440763512032143514417255543}{10747701801267321991699372523959} a^{3} - \frac{3588973917846170955344615615}{16259760667575373663690427419} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1845252459574773786156}{7049604971153465756264748388714009} a^{14} + \frac{1164727471652957994170747}{7049604971153465756264748388714009} a^{12} + \frac{277463240307666545660934486}{7049604971153465756264748388714009} a^{10} + \frac{810008118009668581512356717}{171941584662279652591823131432049} a^{8} + \frac{220600104875828002437175102276}{640873179195769614205886217155819} a^{6} + \frac{176336893790965120364870688257}{10665060470731415667571480164469} a^{4} + \frac{176734353638269652282264794}{393530145409077733942344569} a^{2} + \frac{4185036198113939548299663}{595355741919936057401429} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5466885894.88 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n864 |
| Character table for t16n864 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.26265625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| 5 | Data not computed | ||||||
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 661 | Data not computed | ||||||