Properties

Label 16.0.14508715371...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{12}\cdot 41^{6}\cdot 661^{4}$
Root discriminant $136.49$
Ramified primes $2, 5, 41, 661$
Class number $16$ (GRH)
Class group $[2, 2, 2, 2]$ (GRH)
Galois group 16T864

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![320902833165121, 0, 28157888537938, 0, 1432670949736, 0, 44271217964, 0, 933637909, 0, 12863682, 0, 120029, 0, 571, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 571*x^14 + 120029*x^12 + 12863682*x^10 + 933637909*x^8 + 44271217964*x^6 + 1432670949736*x^4 + 28157888537938*x^2 + 320902833165121)
 
gp: K = bnfinit(x^16 + 571*x^14 + 120029*x^12 + 12863682*x^10 + 933637909*x^8 + 44271217964*x^6 + 1432670949736*x^4 + 28157888537938*x^2 + 320902833165121, 1)
 

Normalized defining polynomial

\( x^{16} + 571 x^{14} + 120029 x^{12} + 12863682 x^{10} + 933637909 x^{8} + 44271217964 x^{6} + 1432670949736 x^{4} + 28157888537938 x^{2} + 320902833165121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14508715371960087713296000000000000=2^{16}\cdot 5^{12}\cdot 41^{6}\cdot 661^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $136.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41, 661$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{661} a^{10} - \frac{90}{661} a^{8} - \frac{273}{661} a^{6} - \frac{39}{661} a^{4} - \frac{134}{661} a^{2}$, $\frac{1}{661} a^{11} - \frac{90}{661} a^{9} - \frac{273}{661} a^{7} - \frac{39}{661} a^{5} - \frac{134}{661} a^{3}$, $\frac{1}{555326591} a^{12} - \frac{270439}{555326591} a^{10} - \frac{100885398}{555326591} a^{8} + \frac{122676934}{555326591} a^{6} + \frac{209743098}{555326591} a^{4} - \frac{3715}{20491} a^{2} - \frac{6}{31}$, $\frac{1}{555326591} a^{13} - \frac{270439}{555326591} a^{11} - \frac{100885398}{555326591} a^{9} + \frac{122676934}{555326591} a^{7} + \frac{209743098}{555326591} a^{5} - \frac{3715}{20491} a^{3} - \frac{6}{31} a$, $\frac{1}{192531761367172303269346543244168299799} a^{14} + \frac{127224608719634493309806488646}{192531761367172303269346543244168299799} a^{12} + \frac{4008783747754095985244027351824294}{6210701979586203331269243330457041929} a^{10} + \frac{90191609587116349417726372644225474176}{192531761367172303269346543244168299799} a^{8} + \frac{6526339533121550436796246306846142693}{17502887397015663933576958476742572709} a^{6} - \frac{60374216561217696210608651563623346}{291273466516145693297044694771812859} a^{4} + \frac{4637440763512032143514417255543}{10747701801267321991699372523959} a^{2} - \frac{3588973917846170955344615615}{16259760667575373663690427419}$, $\frac{1}{192531761367172303269346543244168299799} a^{15} + \frac{127224608719634493309806488646}{192531761367172303269346543244168299799} a^{13} + \frac{4008783747754095985244027351824294}{6210701979586203331269243330457041929} a^{11} + \frac{90191609587116349417726372644225474176}{192531761367172303269346543244168299799} a^{9} + \frac{6526339533121550436796246306846142693}{17502887397015663933576958476742572709} a^{7} - \frac{60374216561217696210608651563623346}{291273466516145693297044694771812859} a^{5} + \frac{4637440763512032143514417255543}{10747701801267321991699372523959} a^{3} - \frac{3588973917846170955344615615}{16259760667575373663690427419} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1845252459574773786156}{7049604971153465756264748388714009} a^{14} + \frac{1164727471652957994170747}{7049604971153465756264748388714009} a^{12} + \frac{277463240307666545660934486}{7049604971153465756264748388714009} a^{10} + \frac{810008118009668581512356717}{171941584662279652591823131432049} a^{8} + \frac{220600104875828002437175102276}{640873179195769614205886217155819} a^{6} + \frac{176336893790965120364870688257}{10665060470731415667571480164469} a^{4} + \frac{176734353638269652282264794}{393530145409077733942344569} a^{2} + \frac{4185036198113939548299663}{595355741919936057401429} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5466885894.88 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T864:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 41 conjugacy class representatives for t16n864
Character table for t16n864 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.26265625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.6$x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$$2$$4$$8$$(C_8:C_2):C_2$$[2, 2, 2]^{4}$
2.8.8.6$x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$$2$$4$$8$$(C_8:C_2):C_2$$[2, 2, 2]^{4}$
5Data not computed
$41$41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.4.3.4$x^{4} + 8856$$4$$1$$3$$C_4$$[\ ]_{4}$
41.4.3.2$x^{4} - 1476$$4$$1$$3$$C_4$$[\ ]_{4}$
41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
661Data not computed