Normalized defining polynomial
\( x^{16} - 2 x^{15} + 37 x^{14} - 39 x^{13} + 272 x^{12} + 125 x^{11} - 639 x^{10} - 1340 x^{9} + 31820 x^{8} - 78107 x^{7} + 90672 x^{6} + 75155 x^{5} - 226678 x^{4} + 112359 x^{3} + 403234 x^{2} - 649142 x + 374959 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1450531566903202684958906641=13^{12}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{174860406060230635166006591955017967604359} a^{15} + \frac{8395667743482850330196051226313705767218}{174860406060230635166006591955017967604359} a^{14} + \frac{28976688513355646529410394964209036339040}{174860406060230635166006591955017967604359} a^{13} - \frac{27961938788244247274267249588929924168579}{174860406060230635166006591955017967604359} a^{12} - \frac{26099337475273170737803335990596226909224}{174860406060230635166006591955017967604359} a^{11} + \frac{21227671729755004117121007410850308372561}{174860406060230635166006591955017967604359} a^{10} - \frac{6963121200381406528637816889307212590066}{174860406060230635166006591955017967604359} a^{9} + \frac{1905201704319514804499209895659903210259}{174860406060230635166006591955017967604359} a^{8} + \frac{7340966361451543937305907582910989536397}{174860406060230635166006591955017967604359} a^{7} + \frac{76269135648092671538836380509675433169429}{174860406060230635166006591955017967604359} a^{6} - \frac{19412115056134824212960610349408799563075}{174860406060230635166006591955017967604359} a^{5} + \frac{83338667768231621679650457623335728251980}{174860406060230635166006591955017967604359} a^{4} + \frac{65146710815892866083429137214893381875132}{174860406060230635166006591955017967604359} a^{3} - \frac{78517662253628204954987622583414835660345}{174860406060230635166006591955017967604359} a^{2} + \frac{56519907516186957970948405139754517862399}{174860406060230635166006591955017967604359} a + \frac{2673384011658286437911018626489767794986}{174860406060230635166006591955017967604359}$
Class group and class number
$C_{2}\times C_{2}\times C_{16}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 304116.798972 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.6171373.2, 4.4.8957.1, 4.0.116441.1, 8.4.2929680361933.1, 8.4.1042962037.1, 8.0.38085844705129.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53 | Data not computed | ||||||