Normalized defining polynomial
\( x^{16} - 8 x^{15} + 8 x^{14} + 38 x^{13} + 161 x^{12} - 974 x^{11} + 765 x^{10} + 324 x^{9} + 5385 x^{8} - 23710 x^{7} + 72233 x^{6} - 187868 x^{5} + 360296 x^{4} - 475942 x^{3} + 424309 x^{2} - 225810 x + 52092 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1450531566903202684958906641=13^{12}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{7} - \frac{1}{4} a^{6} + \frac{1}{12} a^{5} - \frac{1}{4} a^{4} + \frac{1}{12} a^{3} - \frac{1}{4} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{7} - \frac{1}{8} a^{6} + \frac{5}{24} a^{5} - \frac{1}{8} a^{4} - \frac{1}{6} a^{3} + \frac{3}{8} a^{2} + \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{8} - \frac{1}{24} a^{7} - \frac{1}{24} a^{6} - \frac{1}{24} a^{5} + \frac{1}{12} a^{4} + \frac{11}{24} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{48} a^{11} - \frac{1}{48} a^{10} - \frac{1}{24} a^{8} - \frac{1}{48} a^{7} + \frac{1}{48} a^{6} + \frac{1}{6} a^{5} - \frac{1}{24} a^{4} + \frac{1}{48} a^{3} + \frac{23}{48} a^{2} + \frac{1}{24} a + \frac{1}{4}$, $\frac{1}{144} a^{12} - \frac{1}{144} a^{11} - \frac{1}{72} a^{10} - \frac{1}{72} a^{9} - \frac{1}{48} a^{8} - \frac{5}{144} a^{7} - \frac{1}{24} a^{6} - \frac{1}{18} a^{5} + \frac{29}{144} a^{4} + \frac{17}{144} a^{3} - \frac{5}{72} a^{2} - \frac{5}{12} a$, $\frac{1}{2448} a^{13} + \frac{5}{816} a^{11} - \frac{11}{1224} a^{10} - \frac{29}{2448} a^{9} + \frac{11}{306} a^{8} + \frac{7}{2448} a^{7} - \frac{73}{306} a^{6} + \frac{91}{816} a^{5} - \frac{109}{1224} a^{4} - \frac{11}{2448} a^{3} - \frac{58}{153} a^{2} + \frac{4}{17} a - \frac{5}{34}$, $\frac{1}{5826240} a^{14} - \frac{271}{1942080} a^{13} + \frac{811}{416160} a^{12} + \frac{2377}{388416} a^{11} + \frac{35}{6936} a^{10} + \frac{4987}{1942080} a^{9} - \frac{1999}{72828} a^{8} - \frac{769}{18496} a^{7} - \frac{9}{68} a^{6} - \frac{24823}{388416} a^{5} + \frac{62317}{416160} a^{4} + \frac{541039}{1942080} a^{3} + \frac{1927309}{5826240} a^{2} + \frac{27725}{194208} a + \frac{78153}{161840}$, $\frac{1}{3901220620967678400} a^{15} - \frac{24397456131}{433468957885297600} a^{14} + \frac{97889465181593}{975305155241919600} a^{13} - \frac{161351401081939}{76494521979758400} a^{12} + \frac{80026973564675}{26008137473117856} a^{11} + \frac{5699269467406567}{1300406873655892800} a^{10} - \frac{7276181086185553}{1950610310483839200} a^{9} - \frac{2663650926282473}{260081374731178560} a^{8} - \frac{476069348640397}{18577241052227040} a^{7} + \frac{26280261084363229}{260081374731178560} a^{6} + \frac{4971669406131257}{60956572202619975} a^{5} - \frac{143098836684320417}{1300406873655892800} a^{4} + \frac{1213064399297813107}{3901220620967678400} a^{3} - \frac{3105665609827631}{46443102630567600} a^{2} - \frac{3015042242957553}{7740517105094600} a + \frac{22711722347448411}{54183619735662200}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1434748.43032 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{689}) \), 4.0.6171373.1 x2, \(\Q(\sqrt{13}, \sqrt{53})\), 4.0.116441.1 x2, 8.0.38085844705129.1 x2, 8.0.38085844705129.4, 8.4.2929680361933.4 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |