Normalized defining polynomial
\( x^{16} - 2 x^{15} + 11 x^{14} + 15 x^{13} - 158 x^{12} + 284 x^{11} - 645 x^{10} - 1199 x^{9} + 3388 x^{8} - 7527 x^{7} + 27009 x^{6} + 10084 x^{5} + 65215 x^{4} + 77819 x^{3} + 99002 x^{2} + 96729 x + 30663 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1450531566903202684958906641=13^{12}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{8} + \frac{2}{9} a^{7} + \frac{4}{9} a^{6} - \frac{4}{9} a^{5} - \frac{2}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2} - \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{2}{9} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{4}{27} a^{10} + \frac{4}{27} a^{9} + \frac{4}{27} a^{8} - \frac{13}{27} a^{7} + \frac{1}{27} a^{6} + \frac{10}{27} a^{5} - \frac{10}{27} a^{4} - \frac{2}{9} a^{3} - \frac{1}{9} a^{2} + \frac{13}{27} a - \frac{4}{9}$, $\frac{1}{1431} a^{14} + \frac{10}{1431} a^{13} + \frac{14}{477} a^{12} + \frac{1}{27} a^{11} - \frac{62}{477} a^{10} + \frac{22}{477} a^{9} - \frac{206}{1431} a^{8} - \frac{535}{1431} a^{7} - \frac{37}{159} a^{6} + \frac{211}{1431} a^{5} - \frac{182}{1431} a^{4} + \frac{25}{53} a^{3} - \frac{428}{1431} a^{2} + \frac{683}{1431} a - \frac{65}{477}$, $\frac{1}{20312845500401132059982835072621} a^{15} + \frac{1078809498792513617377078375}{20312845500401132059982835072621} a^{14} + \frac{328552768264979134031678627684}{20312845500401132059982835072621} a^{13} - \frac{628923650814444738144022823}{2256982833377903562220315008069} a^{12} + \frac{698653024102431077830078994806}{20312845500401132059982835072621} a^{11} + \frac{649845277152619679877121938110}{20312845500401132059982835072621} a^{10} - \frac{832399687375582533044551114841}{6770948500133710686660945024207} a^{9} + \frac{2160420317650535977765976568082}{20312845500401132059982835072621} a^{8} + \frac{9155496482474916686800061020147}{20312845500401132059982835072621} a^{7} + \frac{460788598797825119828759951164}{6770948500133710686660945024207} a^{6} - \frac{206015480266113124733195057416}{2256982833377903562220315008069} a^{5} - \frac{1174523874914832514625287773704}{20312845500401132059982835072621} a^{4} + \frac{7743937918924954355764771523767}{20312845500401132059982835072621} a^{3} - \frac{9163345514792366598590865885304}{20312845500401132059982835072621} a^{2} - \frac{3927765857518380572644572734989}{20312845500401132059982835072621} a - \frac{2119874678331592855280244879026}{6770948500133710686660945024207}$
Class group and class number
$C_{2}\times C_{16}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 490239.226662 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.6171373.2, 4.4.8957.1, 4.0.116441.1, 8.8.718600843493.1, 8.0.4252075997.1, 8.0.38085844705129.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $53$ | 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |