Properties

Label 16.0.14479694601...5136.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{42}\cdot 7^{6}\cdot 23^{4}$
Root discriminant $28.03$
Ramified primes $2, 7, 23$
Class number $4$
Class group $[2, 2]$
Galois group 16T1174

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14, -112, 448, -952, 1093, -744, 938, -2152, 3081, -2640, 1540, -744, 347, -136, 42, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 42*x^14 - 136*x^13 + 347*x^12 - 744*x^11 + 1540*x^10 - 2640*x^9 + 3081*x^8 - 2152*x^7 + 938*x^6 - 744*x^5 + 1093*x^4 - 952*x^3 + 448*x^2 - 112*x + 14)
 
gp: K = bnfinit(x^16 - 8*x^15 + 42*x^14 - 136*x^13 + 347*x^12 - 744*x^11 + 1540*x^10 - 2640*x^9 + 3081*x^8 - 2152*x^7 + 938*x^6 - 744*x^5 + 1093*x^4 - 952*x^3 + 448*x^2 - 112*x + 14, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 42 x^{14} - 136 x^{13} + 347 x^{12} - 744 x^{11} + 1540 x^{10} - 2640 x^{9} + 3081 x^{8} - 2152 x^{7} + 938 x^{6} - 744 x^{5} + 1093 x^{4} - 952 x^{3} + 448 x^{2} - 112 x + 14 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(144796946017701263835136=2^{42}\cdot 7^{6}\cdot 23^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{3}{8} a^{6} - \frac{3}{8} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4122761047439600} a^{15} + \frac{31105193707853}{824552209487920} a^{14} - \frac{214438130891263}{4122761047439600} a^{13} - \frac{8593702650187}{824552209487920} a^{12} - \frac{312084791938279}{2061380523719800} a^{11} - \frac{439623703025839}{2061380523719800} a^{10} + \frac{479818968407373}{2061380523719800} a^{9} + \frac{486644230903709}{2061380523719800} a^{8} - \frac{9437667084781}{824552209487920} a^{7} + \frac{766071196713383}{4122761047439600} a^{6} + \frac{1096684287166147}{4122761047439600} a^{5} + \frac{607909741990587}{4122761047439600} a^{4} - \frac{853539201400403}{2061380523719800} a^{3} - \frac{136524137125619}{412276104743960} a^{2} + \frac{425285788499239}{2061380523719800} a - \frac{520091023916809}{2061380523719800}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 94460.2143784 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1174:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 70 conjugacy class representatives for t16n1174 are not computed
Character table for t16n1174 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.10304.1, 8.4.11891310592.2, 8.4.3397517312.2, 8.0.380521938944.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.11.3$x^{4} + 4 x^{2} + 18$$4$$1$$11$$C_4$$[3, 4]$
2.4.11.3$x^{4} + 4 x^{2} + 18$$4$$1$$11$$C_4$$[3, 4]$
2.8.20.1$x^{8} + 4 x^{7} + 14 x^{4} + 4$$4$$2$$20$$D_4\times C_2$$[2, 3, 7/2]^{2}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.3.1$x^{4} + 14$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
7.4.3.1$x^{4} + 14$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$23$23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$