Properties

Label 16.0.14476503040...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 5^{14}\cdot 29^{2}\cdot 41^{2}$
Root discriminant $28.02$
Ramified primes $2, 5, 29, 41$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T797

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1601, -9214, 23529, -32314, 23536, -2852, -11859, 12728, -5993, 452, 1381, -1068, 456, -126, 29, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 29*x^14 - 126*x^13 + 456*x^12 - 1068*x^11 + 1381*x^10 + 452*x^9 - 5993*x^8 + 12728*x^7 - 11859*x^6 - 2852*x^5 + 23536*x^4 - 32314*x^3 + 23529*x^2 - 9214*x + 1601)
 
gp: K = bnfinit(x^16 - 6*x^15 + 29*x^14 - 126*x^13 + 456*x^12 - 1068*x^11 + 1381*x^10 + 452*x^9 - 5993*x^8 + 12728*x^7 - 11859*x^6 - 2852*x^5 + 23536*x^4 - 32314*x^3 + 23529*x^2 - 9214*x + 1601, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 29 x^{14} - 126 x^{13} + 456 x^{12} - 1068 x^{11} + 1381 x^{10} + 452 x^{9} - 5993 x^{8} + 12728 x^{7} - 11859 x^{6} - 2852 x^{5} + 23536 x^{4} - 32314 x^{3} + 23529 x^{2} - 9214 x + 1601 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(144765030400000000000000=2^{24}\cdot 5^{14}\cdot 29^{2}\cdot 41^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{209} a^{14} + \frac{7}{209} a^{13} + \frac{7}{209} a^{12} + \frac{10}{209} a^{11} + \frac{4}{209} a^{10} - \frac{56}{209} a^{9} - \frac{8}{209} a^{8} - \frac{12}{209} a^{7} - \frac{20}{209} a^{6} + \frac{30}{209} a^{5} - \frac{13}{209} a^{4} + \frac{68}{209} a^{3} - \frac{27}{209} a^{2} - \frac{12}{209} a + \frac{90}{209}$, $\frac{1}{10680568085806740735075649} a^{15} - \frac{14660755753587606027206}{10680568085806740735075649} a^{14} - \frac{692697133213172000502915}{10680568085806740735075649} a^{13} + \frac{3980895766271671316290833}{10680568085806740735075649} a^{12} + \frac{5263791523415064459800547}{10680568085806740735075649} a^{11} - \frac{4930319056513918902399464}{10680568085806740735075649} a^{10} - \frac{977155508225814783422409}{10680568085806740735075649} a^{9} + \frac{109665754788381657440425}{10680568085806740735075649} a^{8} + \frac{3186234440848624978671225}{10680568085806740735075649} a^{7} + \frac{2340162688652860988048576}{10680568085806740735075649} a^{6} - \frac{2768765397988536486959140}{10680568085806740735075649} a^{5} + \frac{3995178736525481351382322}{10680568085806740735075649} a^{4} - \frac{26314944647280471409657}{344534454380862604357279} a^{3} + \frac{3041312790497316071409715}{10680568085806740735075649} a^{2} - \frac{76061049880250288013077}{562135162410881091319771} a + \frac{581928548920270243299318}{10680568085806740735075649}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{3605810421858426618496}{970960735073340066825059} a^{15} - \frac{16645484071840816660954}{970960735073340066825059} a^{14} + \frac{3990548966238536238104}{51103196582807371938161} a^{13} - \frac{322766568165687525383234}{970960735073340066825059} a^{12} + \frac{1075864338548349516693524}{970960735073340066825059} a^{11} - \frac{1841532452645842836628197}{970960735073340066825059} a^{10} + \frac{690476668204803401872494}{970960735073340066825059} a^{9} + \frac{5641186510258116410239253}{970960735073340066825059} a^{8} - \frac{15237813717510498710204602}{970960735073340066825059} a^{7} + \frac{16365244174083647328586799}{970960735073340066825059} a^{6} + \frac{4343749398230311482624562}{970960735073340066825059} a^{5} - \frac{32574518841730598208174586}{970960735073340066825059} a^{4} + \frac{64757239547139722280758}{1648490212348624901231} a^{3} - \frac{16103852167836267639732465}{970960735073340066825059} a^{2} - \frac{1078801972069105219981968}{970960735073340066825059} a + \frac{2774253280380229799228422}{970960735073340066825059} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 192866.299609 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T797:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 62 conjugacy class representatives for t16n797 are not computed
Character table for t16n797 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
5Data not computed
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
41Data not computed