Normalized defining polynomial
\( x^{16} + 172 x^{14} + 13978 x^{12} - 24 x^{11} + 696224 x^{10} + 4368 x^{9} + 23084937 x^{8} + 294912 x^{7} + 518313508 x^{6} + 4129104 x^{5} + 7647922624 x^{4} - 59931840 x^{3} + 67451890556 x^{2} - 1387724424 x + 270839247073 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14473837877661054916170965242085376=2^{48}\cdot 3^{8}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4656=2^{4}\cdot 3\cdot 97\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4656}(1,·)$, $\chi_{4656}(581,·)$, $\chi_{4656}(775,·)$, $\chi_{4656}(971,·)$, $\chi_{4656}(1165,·)$, $\chi_{4656}(1745,·)$, $\chi_{4656}(1939,·)$, $\chi_{4656}(2135,·)$, $\chi_{4656}(2329,·)$, $\chi_{4656}(2909,·)$, $\chi_{4656}(3103,·)$, $\chi_{4656}(3299,·)$, $\chi_{4656}(3493,·)$, $\chi_{4656}(4073,·)$, $\chi_{4656}(4267,·)$, $\chi_{4656}(4463,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4883168447} a^{14} + \frac{1272738164}{4883168447} a^{13} - \frac{259742802}{4883168447} a^{12} - \frac{1091496515}{4883168447} a^{11} - \frac{909080740}{4883168447} a^{10} - \frac{383246484}{4883168447} a^{9} - \frac{1907772988}{4883168447} a^{8} + \frac{1372804213}{4883168447} a^{7} - \frac{1978886815}{4883168447} a^{6} + \frac{430735899}{4883168447} a^{5} + \frac{939579253}{4883168447} a^{4} + \frac{1327646123}{4883168447} a^{3} + \frac{390433603}{4883168447} a^{2} - \frac{52300998}{4883168447} a - \frac{954632851}{4883168447}$, $\frac{1}{411923991392898753914612488144359917835637485263} a^{15} + \frac{32593826289266396968815864234280674772}{411923991392898753914612488144359917835637485263} a^{14} + \frac{102200765351977073374008935464534504273857021618}{411923991392898753914612488144359917835637485263} a^{13} + \frac{106451901498894977392896890222144244519317062912}{411923991392898753914612488144359917835637485263} a^{12} - \frac{7882897118727631753187638905094328533029743465}{411923991392898753914612488144359917835637485263} a^{11} - \frac{104123496421515899330789270304820172176531978387}{411923991392898753914612488144359917835637485263} a^{10} + \frac{169036578046763662124932353327695969199668598301}{411923991392898753914612488144359917835637485263} a^{9} - \frac{83054451851298627648123669330879522464410915447}{411923991392898753914612488144359917835637485263} a^{8} + \frac{100305628843188728033462238180073243875365831411}{411923991392898753914612488144359917835637485263} a^{7} - \frac{2586746014881153951915755802569776577685106346}{24230823023111691406741911067315289284449263839} a^{6} - \frac{124100988044160789950879395580579814660304357744}{411923991392898753914612488144359917835637485263} a^{5} - \frac{34702728673021441724217871114370640911470791193}{411923991392898753914612488144359917835637485263} a^{4} - \frac{7279171954405782440651817346309383976054577571}{24230823023111691406741911067315289284449263839} a^{3} - \frac{54270335188628852559333749109123906265229259283}{411923991392898753914612488144359917835637485263} a^{2} + \frac{11214897170181593425906850162992549591573815249}{411923991392898753914612488144359917835637485263} a + \frac{182858435040361171221815199896951436655382073}{1723531344740162150270345138679330200149110817}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{2720}$, which has order $1740800$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |