Normalized defining polynomial
\( x^{16} - 10 x^{14} + 107 x^{12} - 24 x^{11} - 270 x^{10} + 940 x^{9} + 1845 x^{8} - 800 x^{7} + 5202 x^{6} - 4440 x^{5} + 3641 x^{4} - 4648 x^{3} + 10470 x^{2} + 844 x + 3398 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(144614335422665336893210624=2^{32}\cdot 13^{6}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{32} a^{10} - \frac{1}{16} a^{9} + \frac{1}{32} a^{8} - \frac{1}{8} a^{7} - \frac{5}{32} a^{6} + \frac{7}{16} a^{5} + \frac{1}{32} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{3}{16}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{3}{64} a^{9} + \frac{1}{64} a^{8} - \frac{1}{64} a^{7} - \frac{15}{64} a^{6} + \frac{3}{64} a^{5} - \frac{3}{64} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{11}{32} a + \frac{9}{32}$, $\frac{1}{256} a^{12} - \frac{1}{32} a^{9} - \frac{5}{128} a^{8} + \frac{3}{32} a^{7} - \frac{25}{128} a^{6} + \frac{5}{64} a^{5} + \frac{19}{256} a^{4} - \frac{1}{4} a^{3} + \frac{37}{128} a^{2} - \frac{5}{64} a + \frac{55}{128}$, $\frac{1}{512} a^{13} - \frac{1}{512} a^{12} - \frac{1}{64} a^{10} + \frac{15}{256} a^{9} + \frac{1}{256} a^{8} - \frac{5}{256} a^{7} + \frac{3}{256} a^{6} + \frac{159}{512} a^{5} + \frac{13}{512} a^{4} - \frac{91}{256} a^{3} - \frac{79}{256} a^{2} + \frac{97}{256} a - \frac{23}{256}$, $\frac{1}{1024} a^{14} + \frac{1}{1024} a^{12} - \frac{1}{128} a^{11} - \frac{5}{512} a^{10} - \frac{3}{64} a^{9} + \frac{1}{256} a^{8} - \frac{21}{256} a^{7} + \frac{97}{1024} a^{6} + \frac{37}{256} a^{5} - \frac{99}{1024} a^{4} + \frac{11}{256} a^{3} - \frac{57}{128} a^{2} + \frac{91}{256} a - \frac{137}{512}$, $\frac{1}{940450677591279069184} a^{15} + \frac{190756795052556777}{940450677591279069184} a^{14} + \frac{18132100713562161}{940450677591279069184} a^{13} - \frac{966990908480070187}{940450677591279069184} a^{12} + \frac{758527172791550375}{470225338795639534592} a^{11} - \frac{3616692166869436853}{470225338795639534592} a^{10} + \frac{845402826027202253}{235112669397819767296} a^{9} - \frac{1450620301021801731}{117556334698909883648} a^{8} + \frac{7358836402664820173}{940450677591279069184} a^{7} + \frac{214210290629066168981}{940450677591279069184} a^{6} + \frac{298582029413386042705}{940450677591279069184} a^{5} - \frac{12598941678489259187}{940450677591279069184} a^{4} - \frac{69187531393887053175}{235112669397819767296} a^{3} + \frac{444680592974031085}{10222289973818250752} a^{2} + \frac{96317814288614604933}{470225338795639534592} a - \frac{175434498802948437925}{470225338795639534592}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5108183.48464 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times D_4).C_2^3$ (as 16T600):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $(C_2^2\times D_4).C_2^3$ |
| Character table for $(C_2^2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.120224.2, 4.0.3757.1, 4.4.9248.1, 8.0.14453810176.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.8.18.8 | $x^{8} + 36$ | $4$ | $2$ | $18$ | $Q_8:C_2$ | $[2, 3, 7/2]^{2}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |