Normalized defining polynomial
\( x^{16} - 4 x^{15} - 39 x^{14} + 154 x^{13} + 1509 x^{12} - 2202 x^{11} - 33967 x^{10} + 37482 x^{9} + 478829 x^{8} - 1172884 x^{7} - 2897647 x^{6} + 13350656 x^{5} + 85842500 x^{4} - 404797504 x^{3} + 30548912 x^{2} + 646882304 x + 2548078528 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143902101499474565788603458614754288481=17^{12}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $242.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{10} + \frac{1}{32} a^{9} + \frac{1}{32} a^{8} + \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{3}{32} a^{4} - \frac{3}{32} a^{3} + \frac{13}{32} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{3}{64} a^{9} - \frac{1}{16} a^{8} + \frac{3}{32} a^{7} + \frac{1}{32} a^{6} - \frac{7}{64} a^{5} + \frac{11}{64} a^{4} - \frac{25}{64} a^{3} - \frac{9}{32} a^{2} + \frac{5}{16} a + \frac{3}{8}$, $\frac{1}{5092672} a^{12} - \frac{3}{5092672} a^{11} + \frac{9325}{5092672} a^{10} + \frac{79583}{2546336} a^{9} - \frac{114217}{2546336} a^{8} + \frac{307771}{2546336} a^{7} + \frac{555973}{5092672} a^{6} + \frac{975881}{5092672} a^{5} + \frac{731193}{5092672} a^{4} - \frac{287087}{636584} a^{3} - \frac{145143}{636584} a^{2} - \frac{11312}{79573} a + \frac{137107}{318292}$, $\frac{1}{10185344} a^{13} - \frac{70257}{10185344} a^{11} - \frac{25789}{5092672} a^{10} + \frac{328637}{10185344} a^{9} + \frac{70853}{1273168} a^{8} - \frac{1257759}{10185344} a^{7} - \frac{349133}{5092672} a^{6} + \frac{2306095}{10185344} a^{5} + \frac{315349}{1273168} a^{4} + \frac{4441729}{10185344} a^{3} - \frac{2501565}{5092672} a^{2} - \frac{74121}{2546336} a + \frac{424777}{1273168}$, $\frac{1}{81482752} a^{14} - \frac{1}{20370688} a^{13} - \frac{3}{81482752} a^{12} + \frac{88917}{40741376} a^{11} + \frac{449417}{81482752} a^{10} + \frac{726543}{40741376} a^{9} + \frac{174853}{81482752} a^{8} + \frac{3212097}{40741376} a^{7} + \frac{7769857}{81482752} a^{6} + \frac{1409053}{20370688} a^{5} - \frac{1566375}{6267904} a^{4} - \frac{447945}{2546336} a^{3} + \frac{4658525}{10185344} a^{2} - \frac{413561}{1273168} a - \frac{2517059}{5092672}$, $\frac{1}{196793114362898970812296281557807104} a^{15} + \frac{143693732442656209019305077}{98396557181449485406148140778903552} a^{14} + \frac{4423463314997383587890105109}{196793114362898970812296281557807104} a^{13} + \frac{475683994153394203149895703}{6149784823840592837884258798681472} a^{12} + \frac{351500286020459090303887938013909}{196793114362898970812296281557807104} a^{11} + \frac{447861351197524945070027565372099}{49198278590724742703074070389451776} a^{10} - \frac{151291014571432204172890858489779}{15137931874069151600945867812139008} a^{9} + \frac{1264908696314576766032234582677189}{24599139295362371351537035194725888} a^{8} - \frac{19905823718119691851026981870312307}{196793114362898970812296281557807104} a^{7} - \frac{3913443041016181659153812048524815}{98396557181449485406148140778903552} a^{6} + \frac{28928397654212138098829383514920861}{196793114362898970812296281557807104} a^{5} - \frac{19775044974894504648065541451359941}{98396557181449485406148140778903552} a^{4} - \frac{4958862348695792387946050261905195}{24599139295362371351537035194725888} a^{3} - \frac{294530504627317118790413664268385}{12299569647681185675768517597362944} a^{2} - \frac{3815128511137829731636940824533275}{12299569647681185675768517597362944} a + \frac{664581738279290098091949086201299}{6149784823840592837884258798681472}$
Class group and class number
$C_{28}\times C_{728}$, which has order $20384$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 651512602.568 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |