Normalized defining polynomial
\( x^{16} - 2 x^{15} + 20 x^{14} - 1532 x^{13} + 18456 x^{12} - 36352 x^{11} - 2708722 x^{10} + 6899572 x^{9} - 254586024 x^{8} + 2092644532 x^{7} + 7734173792 x^{6} + 40074764600 x^{5} + 1722809966457 x^{4} - 6943784680154 x^{3} + 59097374743052 x^{2} - 419116620051792 x + 1373873435767232 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143902101499474565788603458614754288481=17^{12}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $242.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{3}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{14} + \frac{3}{64} a^{12} - \frac{1}{32} a^{11} + \frac{1}{64} a^{10} - \frac{1}{8} a^{9} - \frac{3}{64} a^{8} + \frac{1}{32} a^{7} - \frac{1}{64} a^{6} + \frac{1}{16} a^{5} - \frac{15}{64} a^{4} + \frac{13}{32} a^{3} - \frac{3}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{15} + \frac{25060412838917027035288411574002090957181304715598908130042045437950280308979469177741590752221161}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{14} - \frac{1117538371719042017018899679682035883176975330824904220953182936826818290456585806504760504681994249}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{13} + \frac{378936589884687120644501674423743730995953855011196937291836463031871912492326018352155633568936129}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{12} - \frac{4246365703054094286994069347236364377336560961841553752369567842421932129943430883748928847409755581}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{11} + \frac{3898622706182360691279985513592465795644828161390866674600141798211130864256109022912660347670491265}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{10} - \frac{11076775150517764790025971358292998696015395956371216816743528451545153076509097539386477681752816007}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{9} - \frac{2488105455895765923099405674674442763351436707931552008909852791555216810382506963926422303999881849}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{8} - \frac{9636786897537547843707055120453717330644619233530550814693326335552788106902777808527469186549002939}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{7} - \frac{14636448470699780781882059013190778876068576106996525955122856747924688577549494695628861698562214901}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{6} + \frac{19063509457092029450656298938558239755330858372679094831664122987878600716381807911485230893203392889}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{5} + \frac{4623438851471221138225997716723223345523621700009118835267125030734218828841607519816569378061646923}{91463341476263909110025533775773493288518894691346024367571258717147373044478815840518046501920477184} a^{4} - \frac{7714271122200120146653299874117583593779024079775533177300082920300521537031556430606427810038564951}{45731670738131954555012766887886746644259447345673012183785629358573686522239407920259023250960238592} a^{3} + \frac{2124995326788977551344290779815464917498101550829904816238170951384555834571588107458027287222867803}{22865835369065977277506383443943373322129723672836506091892814679286843261119703960129511625480119296} a^{2} - \frac{482203277501889463393657928798207469750979566667877456784205490917564551391146008054016926758922429}{5716458842266494319376595860985843330532430918209126522973203669821710815279925990032377906370029824} a + \frac{349237509733390811431760458881436697414672103185596598284571538737785797044279059347465089989769131}{1429114710566623579844148965246460832633107729552281630743300917455427703819981497508094476592507456}$
Class group and class number
$C_{7}\times C_{14}\times C_{14}\times C_{14}$, which has order $19208$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 715570753.662 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $89$ | 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |