Normalized defining polynomial
\( x^{16} - 4 x^{15} + 213 x^{14} - 728 x^{13} + 23472 x^{12} - 67494 x^{11} + 1674140 x^{10} - 3988680 x^{9} + 82648724 x^{8} - 159005322 x^{7} + 2881145428 x^{6} - 4255788538 x^{5} + 68938613619 x^{4} - 70436280004 x^{3} + 1014049127255 x^{2} - 539518460270 x + 6855061765612 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143902101499474565788603458614754288481=17^{12}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $242.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{5}{16} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{1446362960} a^{12} - \frac{3}{1446362960} a^{11} - \frac{26428027}{723181480} a^{10} - \frac{143396961}{1446362960} a^{9} + \frac{11214589}{1446362960} a^{8} - \frac{170411917}{723181480} a^{7} - \frac{39617113}{289272592} a^{6} + \frac{97724923}{1446362960} a^{5} + \frac{92623791}{723181480} a^{4} + \frac{404917697}{1446362960} a^{3} + \frac{575439699}{1446362960} a^{2} + \frac{6281547}{15386840} a + \frac{108202033}{361590740}$, $\frac{1}{1446362960} a^{13} + \frac{18770811}{723181480} a^{11} + \frac{59625617}{1446362960} a^{10} - \frac{28692777}{723181480} a^{9} + \frac{72404179}{723181480} a^{8} - \frac{316580217}{1446362960} a^{7} + \frac{56662427}{361590740} a^{6} + \frac{13216963}{723181480} a^{5} + \frac{237478963}{1446362960} a^{4} - \frac{37935165}{144636296} a^{3} - \frac{66633909}{144636296} a^{2} + \frac{53863829}{361590740} a - \frac{63691163}{180795370}$, $\frac{1}{5785451840} a^{14} - \frac{1}{2892725920} a^{12} + \frac{20463201}{1446362960} a^{11} - \frac{89536669}{2892725920} a^{10} + \frac{158440021}{2892725920} a^{9} + \frac{316635951}{2892725920} a^{8} - \frac{576117203}{2892725920} a^{7} - \frac{77304791}{413246560} a^{6} - \frac{157825621}{1446362960} a^{5} + \frac{293284421}{2892725920} a^{4} + \frac{886226051}{2892725920} a^{3} - \frac{518174771}{1157090368} a^{2} + \frac{907384467}{2892725920} a + \frac{412604673}{1446362960}$, $\frac{1}{950352717220912782631073553325267283545175680} a^{15} - \frac{19327891869890910839949029912657371}{950352717220912782631073553325267283545175680} a^{14} - \frac{30172940407500819177739329746504513}{95035271722091278263107355332526728354517568} a^{13} + \frac{134830668637762990597818982542223079}{475176358610456391315536776662633641772587840} a^{12} - \frac{3680297740141714662764224342972424039432997}{475176358610456391315536776662633641772587840} a^{11} - \frac{2107585004313604460375540743720149513865889}{59397044826307048914442097082829205221573480} a^{10} + \frac{4152528251563936675806091222805547357759085}{47517635861045639131553677666263364177258784} a^{9} + \frac{7305527531698014543771697830700069030805749}{237588179305228195657768388331316820886293920} a^{8} + \frac{129428510910422768413549333375049593553317}{848529211804386413063458529754702931736764} a^{7} - \frac{75883954660323010330188828202011828470568657}{475176358610456391315536776662633641772587840} a^{6} - \frac{32622697939141188474002369113025652746861883}{475176358610456391315536776662633641772587840} a^{5} - \frac{2766742676896829154177986301631057670241417}{11879408965261409782888419416565841044314696} a^{4} + \frac{19782672664349617132790115710767234400074347}{950352717220912782631073553325267283545175680} a^{3} + \frac{436400536913819732744149836398783842445854247}{950352717220912782631073553325267283545175680} a^{2} - \frac{17926323597491261641770382731359265149626701}{67882336944350913045076682380376234538941120} a + \frac{21015118624329242268167578944832099708258281}{237588179305228195657768388331316820886293920}$
Class group and class number
$C_{2}\times C_{602}\times C_{602}$, which has order $724808$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22977967.6331 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.3.2 | $x^{4} - 801$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.2 | $x^{4} - 801$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.2 | $x^{4} - 801$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.2 | $x^{4} - 801$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |