Properties

Label 16.0.14380862016...0000.3
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{8}\cdot 19^{6}\cdot 103^{6}$
Root discriminant $76.71$
Ramified primes $2, 5, 19, 103$
Class number $19392$ (GRH)
Class group $[2, 4, 2424]$ (GRH)
Galois group 16T1048

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3829849, 0, 21568097, 0, 16818149, 0, 5120439, 0, 797640, 0, 69871, 0, 3481, 0, 92, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 92*x^14 + 3481*x^12 + 69871*x^10 + 797640*x^8 + 5120439*x^6 + 16818149*x^4 + 21568097*x^2 + 3829849)
 
gp: K = bnfinit(x^16 + 92*x^14 + 3481*x^12 + 69871*x^10 + 797640*x^8 + 5120439*x^6 + 16818149*x^4 + 21568097*x^2 + 3829849, 1)
 

Normalized defining polynomial

\( x^{16} + 92 x^{14} + 3481 x^{12} + 69871 x^{10} + 797640 x^{8} + 5120439 x^{6} + 16818149 x^{4} + 21568097 x^{2} + 3829849 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1438086201607169204454400000000=2^{16}\cdot 5^{8}\cdot 19^{6}\cdot 103^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $76.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 103$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{103} a^{10} + \frac{12}{103} a^{8} + \frac{49}{103} a^{6} + \frac{31}{103} a^{4}$, $\frac{1}{103} a^{11} + \frac{12}{103} a^{9} + \frac{49}{103} a^{7} + \frac{31}{103} a^{5}$, $\frac{1}{206} a^{12} - \frac{1}{206} a^{10} + \frac{99}{206} a^{8} - \frac{91}{206} a^{6} - \frac{47}{103} a^{4} - \frac{1}{2}$, $\frac{1}{206} a^{13} - \frac{1}{206} a^{11} + \frac{99}{206} a^{9} - \frac{91}{206} a^{7} - \frac{47}{103} a^{5} - \frac{1}{2} a$, $\frac{1}{14221599229449894} a^{14} + \frac{14567445127214}{7110799614724947} a^{12} + \frac{1114050414866}{2370266538241649} a^{10} + \frac{555056638393724}{7110799614724947} a^{8} - \frac{5852274908425081}{14221599229449894} a^{6} - \frac{3227766905707267}{7110799614724947} a^{4} + \frac{23648452874623}{138073778926698} a^{2} + \frac{2153625969733}{7267040996142}$, $\frac{1}{14221599229449894} a^{15} + \frac{14567445127214}{7110799614724947} a^{13} + \frac{1114050414866}{2370266538241649} a^{11} + \frac{555056638393724}{7110799614724947} a^{9} - \frac{5852274908425081}{14221599229449894} a^{7} - \frac{3227766905707267}{7110799614724947} a^{5} + \frac{23648452874623}{138073778926698} a^{3} + \frac{2153625969733}{7267040996142} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{2424}$, which has order $19392$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10491.0986114 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1048:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 768
The 31 conjugacy class representatives for t16n1048
Character table for t16n1048 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.1957.1, 8.8.2393655625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.8$x^{8} + 4 x^{5} + 8 x^{2} + 48$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
2.8.8.7$x^{8} + 2 x^{6} + 4 x^{5} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
5Data not computed
$19$19.4.2.2$x^{4} - 19 x^{2} + 722$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$103$103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
103.8.6.1$x^{8} - 3193 x^{4} + 6630625$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$