Normalized defining polynomial
\( x^{16} - 4 x^{15} - 57 x^{14} + 197 x^{13} + 1379 x^{12} - 4365 x^{11} - 16438 x^{10} + 63465 x^{9} + 104169 x^{8} - 680824 x^{7} - 678604 x^{6} + 4806966 x^{5} + 7124578 x^{4} - 17591757 x^{3} - 36133339 x^{2} + 65807565 x + 165230275 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143672747301451241912563249451281=29^{12}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{145} a^{12} + \frac{3}{145} a^{11} + \frac{2}{145} a^{9} + \frac{42}{145} a^{8} - \frac{18}{145} a^{7} + \frac{31}{145} a^{6} + \frac{37}{145} a^{5} + \frac{11}{145} a^{4} + \frac{39}{145} a^{3} - \frac{4}{145} a^{2} + \frac{6}{29} a + \frac{13}{29}$, $\frac{1}{725} a^{13} + \frac{2}{725} a^{12} - \frac{32}{725} a^{11} + \frac{31}{725} a^{10} + \frac{69}{725} a^{9} - \frac{263}{725} a^{8} - \frac{9}{725} a^{7} - \frac{23}{725} a^{6} + \frac{119}{725} a^{5} - \frac{59}{725} a^{4} + \frac{189}{725} a^{3} - \frac{82}{725} a^{2} + \frac{238}{725} a - \frac{13}{145}$, $\frac{1}{725} a^{14} - \frac{1}{725} a^{12} + \frac{11}{145} a^{11} + \frac{7}{725} a^{10} - \frac{41}{725} a^{9} + \frac{247}{725} a^{8} - \frac{8}{29} a^{7} - \frac{8}{29} a^{6} - \frac{307}{725} a^{5} + \frac{112}{725} a^{4} - \frac{51}{145} a^{3} - \frac{318}{725} a^{2} - \frac{216}{725} a + \frac{46}{145}$, $\frac{1}{146525702752687986093732934322272992670195025} a^{15} + \frac{44506953779517756647866060310929050155029}{146525702752687986093732934322272992670195025} a^{14} + \frac{187898308025625220643939041755450143584}{146525702752687986093732934322272992670195025} a^{13} + \frac{387410776475493428411727591290496426466666}{146525702752687986093732934322272992670195025} a^{12} - \frac{7041043084275661388563797421578106562149568}{146525702752687986093732934322272992670195025} a^{11} + \frac{285815785219648132322392103413217033990242}{146525702752687986093732934322272992670195025} a^{10} + \frac{26637626528516246346362533725578049512991}{1422579638375611515473135284682262064759175} a^{9} - \frac{51509825676224035428296725215428725532641792}{146525702752687986093732934322272992670195025} a^{8} - \frac{2659783543350095619803861979879758821042815}{5861028110107519443749317372890919706807801} a^{7} + \frac{2540929833128018413941569725071698906252843}{146525702752687986093732934322272992670195025} a^{6} - \frac{14453802852364550187600851338115947941221286}{146525702752687986093732934322272992670195025} a^{5} - \frac{23160303465918007798164494102023529165848742}{146525702752687986093732934322272992670195025} a^{4} - \frac{14904352359682781335935565639839359554833123}{146525702752687986093732934322272992670195025} a^{3} - \frac{68453982561186455806823243554257416149984473}{146525702752687986093732934322272992670195025} a^{2} - \frac{47771940192189420512069048514836438786971794}{146525702752687986093732934322272992670195025} a - \frac{30236905022567771922356801654916829962137}{1274136545675547705162895081063243414523435}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1528503003.68 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.24389.1, 4.2.56347.1, 4.2.1634063.1, 8.0.413322645348029.1, 8.4.413322645348029.1, 8.0.2670161887969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.8.6.1 | $x^{8} - 16147 x^{4} + 93083904$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |