Normalized defining polynomial
\( x^{16} - 2 x^{15} - 6 x^{14} - 4 x^{13} + 54 x^{12} + 24 x^{11} - 148 x^{10} - 72 x^{9} + 290 x^{8} + 140 x^{7} - 1600 x^{6} + 880 x^{5} + 2788 x^{4} - 1600 x^{3} + 424 x^{2} - 320 x + 100 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1436669046353440014336=2^{28}\cdot 3^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{78} a^{13} - \frac{17}{78} a^{11} + \frac{17}{78} a^{10} - \frac{11}{78} a^{9} + \frac{11}{78} a^{8} + \frac{10}{39} a^{7} - \frac{2}{39} a^{6} + \frac{5}{13} a^{5} - \frac{4}{39} a^{4} - \frac{4}{39} a^{3} + \frac{1}{39} a^{2} + \frac{11}{39} a + \frac{6}{13}$, $\frac{1}{4134} a^{14} + \frac{1}{2067} a^{13} - \frac{173}{4134} a^{12} - \frac{251}{4134} a^{11} - \frac{991}{4134} a^{10} - \frac{401}{4134} a^{9} - \frac{51}{1378} a^{8} + \frac{19}{689} a^{7} + \frac{908}{2067} a^{6} + \frac{23}{159} a^{5} - \frac{82}{689} a^{4} - \frac{982}{2067} a^{3} + \frac{10}{159} a^{2} + \frac{274}{2067} a - \frac{222}{689}$, $\frac{1}{2261399255736270} a^{15} + \frac{57061599323}{2261399255736270} a^{14} - \frac{303630295483}{1130699627868135} a^{13} + \frac{1915243264739}{57984596300930} a^{12} - \frac{366483958616761}{2261399255736270} a^{11} - \frac{161920189449567}{753799751912090} a^{10} + \frac{287768519084287}{2261399255736270} a^{9} + \frac{227711731566859}{1130699627868135} a^{8} + \frac{42914902931513}{226139925573627} a^{7} - \frac{41537971098487}{226139925573627} a^{6} - \frac{50733711824636}{226139925573627} a^{5} + \frac{107036816995429}{226139925573627} a^{4} + \frac{410783159366354}{1130699627868135} a^{3} - \frac{8006154321224}{226139925573627} a^{2} + \frac{3221499748652}{1130699627868135} a - \frac{105961016364085}{226139925573627}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{79685535337}{13381060684830} a^{15} - \frac{1800349780187}{173953788902790} a^{14} - \frac{3480312352888}{86976894451395} a^{13} - \frac{5666925651269}{173953788902790} a^{12} + \frac{9336762776179}{28992298150465} a^{11} + \frac{21425702348987}{86976894451395} a^{10} - \frac{25511183626328}{28992298150465} a^{9} - \frac{126296795421007}{173953788902790} a^{8} + \frac{28294968337222}{17395378890279} a^{7} + \frac{8233350159064}{5798459630093} a^{6} - \frac{164889651957428}{17395378890279} a^{5} + \frac{13832282255268}{5798459630093} a^{4} + \frac{1673745126757334}{86976894451395} a^{3} - \frac{79957723111114}{17395378890279} a^{2} - \frac{19179540606248}{86976894451395} a - \frac{20445056037875}{17395378890279} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18089.3875494 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T149):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), 4.0.832.1, 4.0.7488.4, \(\Q(\zeta_{12})\), 8.0.728911872.3 x2, 8.0.56070144.5, 8.0.4211490816.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |