Normalized defining polynomial
\( x^{16} - 6 x^{15} + 5 x^{14} + 31 x^{13} + 53 x^{12} - 319 x^{11} + 95 x^{10} + 3586 x^{9} + 2583 x^{8} - 8982 x^{7} + 13076 x^{6} + 83143 x^{5} + 51395 x^{4} - 76748 x^{3} + 19400 x^{2} + 84280 x + 30416 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1436256755503642932525262129=13^{6}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{644} a^{14} + \frac{25}{161} a^{13} - \frac{1}{28} a^{12} - \frac{31}{644} a^{11} + \frac{33}{644} a^{10} + \frac{3}{92} a^{9} + \frac{1}{644} a^{8} - \frac{107}{322} a^{7} - \frac{139}{644} a^{6} + \frac{109}{322} a^{5} + \frac{19}{161} a^{4} + \frac{281}{644} a^{3} + \frac{9}{28} a^{2} - \frac{153}{322} a - \frac{62}{161}$, $\frac{1}{2885717420007986227454928101502993112} a^{15} + \frac{362285443818533618571938806303369}{721429355001996556863732025375748278} a^{14} + \frac{306274224548826220259420047855394065}{2885717420007986227454928101502993112} a^{13} - \frac{473194706479661465953007892973226423}{2885717420007986227454928101502993112} a^{12} + \frac{578091424282637221751774663246657363}{2885717420007986227454928101502993112} a^{11} - \frac{145978184381162915331728987082969421}{2885717420007986227454928101502993112} a^{10} + \frac{680620036880195391487645319385886929}{2885717420007986227454928101502993112} a^{9} - \frac{62080930487241222799686112978605248}{360714677500998278431866012687874139} a^{8} + \frac{27943839165873523011046971902406133}{125465974782955922932822960934912744} a^{7} + \frac{97413237836159228954845016124437704}{360714677500998278431866012687874139} a^{6} + \frac{42574467838533800414976506729837732}{360714677500998278431866012687874139} a^{5} - \frac{795810056453365969678137933738205809}{2885717420007986227454928101502993112} a^{4} + \frac{103034672076556913751083970527788983}{412245345715426603922132585928999016} a^{3} - \frac{43057504216855883484845798232287177}{206122672857713301961066292964499508} a^{2} - \frac{23799676242055259134980325713816601}{360714677500998278431866012687874139} a - \frac{61789881894757543398089588318174130}{360714677500998278431866012687874139}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22252130.9747 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.317057.1, 4.0.24389.1, 4.0.10933.1, 8.0.100525141249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 29 | Data not computed | ||||||