Normalized defining polynomial
\( x^{16} - 6 x^{15} + 64 x^{14} - 278 x^{13} + 1839 x^{12} - 6330 x^{11} + 31872 x^{10} - 88467 x^{9} + 366078 x^{8} - 810784 x^{7} + 2860699 x^{6} - 4845620 x^{5} + 14901406 x^{4} - 17463475 x^{3} + 47580730 x^{2} - 29325087 x + 72060551 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143607939176308221946269182689=17^{14}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(527=17\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{527}(1,·)$, $\chi_{527}(526,·)$, $\chi_{527}(404,·)$, $\chi_{527}(342,·)$, $\chi_{527}(280,·)$, $\chi_{527}(154,·)$, $\chi_{527}(94,·)$, $\chi_{527}(32,·)$, $\chi_{527}(433,·)$, $\chi_{527}(495,·)$, $\chi_{527}(497,·)$, $\chi_{527}(30,·)$, $\chi_{527}(247,·)$, $\chi_{527}(185,·)$, $\chi_{527}(123,·)$, $\chi_{527}(373,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2166221443622873063273220170577147797497618} a^{15} + \frac{466177913608339633037384392312956902713569}{2166221443622873063273220170577147797497618} a^{14} + \frac{74324906138316634280816170117444619846513}{1083110721811436531636610085288573898748809} a^{13} - \frac{219875024824497952378956928336464226135344}{1083110721811436531636610085288573898748809} a^{12} + \frac{1001408752610611086047882867395260497992093}{2166221443622873063273220170577147797497618} a^{11} - \frac{311690817674710909517414180203573892250215}{1083110721811436531636610085288573898748809} a^{10} - \frac{284688731728291670383873831728029167522360}{1083110721811436531636610085288573898748809} a^{9} + \frac{182740776414865221889112438325742168710631}{2166221443622873063273220170577147797497618} a^{8} - \frac{271356127594295356677547543688920941991504}{1083110721811436531636610085288573898748809} a^{7} - \frac{333138439032500037636646671623782632298329}{1083110721811436531636610085288573898748809} a^{6} - \frac{199554103609786074555316640973351790251693}{2166221443622873063273220170577147797497618} a^{5} + \frac{270719701042657602675571279342348579556697}{1083110721811436531636610085288573898748809} a^{4} - \frac{164778901610915162386599892227201921962318}{1083110721811436531636610085288573898748809} a^{3} + \frac{950067427945065388112497362648303456007757}{2166221443622873063273220170577147797497618} a^{2} - \frac{329999923677030971218563226197952357409683}{1083110721811436531636610085288573898748809} a - \frac{85278726104847795305553117012668489388569}{2166221443622873063273220170577147797497618}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{765}$, which has order $20655$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-527}) \), \(\Q(\sqrt{17}, \sqrt{-31})\), 4.4.4913.1, 4.0.4721393.1, 8.0.22291551860449.1, \(\Q(\zeta_{17})^+\), 8.0.378956381627633.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 31 | Data not computed | ||||||