Normalized defining polynomial
\( x^{16} - x^{15} + 120 x^{14} - 120 x^{13} + 5951 x^{12} - 5951 x^{11} + 157557 x^{10} - 157557 x^{9} + 2402492 x^{8} - 2402492 x^{7} + 21259946 x^{6} - 21259946 x^{5} + 105261332 x^{4} - 105261332 x^{3} + 273264104 x^{2} - 273264104 x + 371265721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1431916863894665085730117693073=17^{15}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(493=17\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{493}(1,·)$, $\chi_{493}(260,·)$, $\chi_{493}(405,·)$, $\chi_{493}(407,·)$, $\chi_{493}(347,·)$, $\chi_{493}(28,·)$, $\chi_{493}(349,·)$, $\chi_{493}(30,·)$, $\chi_{493}(291,·)$, $\chi_{493}(231,·)$, $\chi_{493}(173,·)$, $\chi_{493}(117,·)$, $\chi_{493}(57,·)$, $\chi_{493}(378,·)$, $\chi_{493}(59,·)$, $\chi_{493}(318,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{69174631} a^{9} - \frac{2687102}{69174631} a^{8} + \frac{63}{69174631} a^{7} - \frac{12128450}{69174631} a^{6} + \frac{1323}{69174631} a^{5} - \frac{4723982}{69174631} a^{4} + \frac{10290}{69174631} a^{3} - \frac{12619373}{69174631} a^{2} + \frac{21609}{69174631} a + \frac{32192193}{69174631}$, $\frac{1}{69174631} a^{10} + \frac{70}{69174631} a^{8} + \frac{18809714}{69174631} a^{7} + \frac{1715}{69174631} a^{6} + \frac{22405783}{69174631} a^{5} + \frac{17150}{69174631} a^{4} - \frac{32192193}{69174631} a^{3} + \frac{60025}{69174631} a^{2} - \frac{8910729}{69174631} a + \frac{33614}{69174631}$, $\frac{1}{69174631} a^{11} - \frac{617039}{69174631} a^{8} - \frac{2695}{69174631} a^{7} - \frac{27872920}{69174631} a^{6} - \frac{75460}{69174631} a^{5} + \frac{21788023}{69174631} a^{4} - \frac{660275}{69174631} a^{3} - \frac{24824822}{69174631} a^{2} - \frac{1479016}{69174631} a + \frac{29309313}{69174631}$, $\frac{1}{69174631} a^{12} - \frac{3234}{69174631} a^{8} + \frac{11000537}{69174631} a^{7} - \frac{105644}{69174631} a^{6} + \frac{8035048}{69174631} a^{5} - \frac{1188495}{69174631} a^{4} + \frac{29615067}{69174631} a^{3} - \frac{4437048}{69174631} a^{2} + \frac{12201281}{69174631} a - \frac{2588278}{69174631}$, $\frac{1}{69174631} a^{13} - \frac{32258456}{69174631} a^{8} + \frac{98098}{69174631} a^{7} + \frac{6643525}{69174631} a^{6} + \frac{3090087}{69174631} a^{5} - \frac{29323901}{69174631} a^{4} + \frac{28840812}{69174631} a^{3} + \frac{14181289}{69174631} a^{2} - \frac{1879403}{69174631} a + \frac{1732507}{69174631}$, $\frac{1}{69174631} a^{14} + \frac{124852}{69174631} a^{8} + \frac{32861954}{69174631} a^{7} + \frac{4588311}{69174631} a^{6} - \frac{32133940}{69174631} a^{5} - \frac{14114899}{69174631} a^{4} - \frac{15360640}{69174631} a^{3} + \frac{6597287}{69174631} a^{2} + \frac{1951624}{69174631} a - \frac{9876554}{69174631}$, $\frac{1}{69174631} a^{15} + \frac{25960508}{69174631} a^{8} - \frac{3277365}{69174631} a^{7} - \frac{3567130}{69174631} a^{6} + \frac{28229798}{69174631} a^{5} + \frac{336118}{69174631} a^{4} - \frac{32986435}{69174631} a^{3} + \frac{34513764}{69174631} a^{2} - \frac{9992813}{69174631} a - \frac{6095443}{69174631}$
Class group and class number
$C_{40834}$, which has order $40834$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 29 | Data not computed | ||||||