Normalized defining polynomial
\( x^{16} - 4 x^{15} + 2 x^{14} + 54 x^{13} + 331 x^{12} - 1300 x^{11} - 10562 x^{10} - 15320 x^{9} + 27997 x^{8} + 244660 x^{7} + 934638 x^{6} + 2249700 x^{5} + 4135411 x^{4} + 6674934 x^{3} + 8231782 x^{2} + 6005216 x + 1852321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143132753548578816000000000000=2^{24}\cdot 3^{4}\cdot 5^{12}\cdot 11^{2}\cdot 29^{4}\cdot 71^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 29, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11341} a^{14} + \frac{546}{11341} a^{13} - \frac{4456}{11341} a^{12} - \frac{346}{1031} a^{11} + \frac{1401}{11341} a^{10} - \frac{5106}{11341} a^{9} + \frac{5057}{11341} a^{8} - \frac{5436}{11341} a^{7} - \frac{45}{1031} a^{6} + \frac{323}{11341} a^{5} - \frac{1902}{11341} a^{4} + \frac{4500}{11341} a^{3} - \frac{1527}{11341} a^{2} + \frac{5235}{11341} a - \frac{4276}{11341}$, $\frac{1}{76959643321648124930797078489755516517859} a^{15} + \frac{741816175930985792649036898017687980}{76959643321648124930797078489755516517859} a^{14} - \frac{955587671446873015257134476022830255053}{76959643321648124930797078489755516517859} a^{13} - \frac{5217687763885650307683102011248347937314}{76959643321648124930797078489755516517859} a^{12} + \frac{3088456408811722174810272933318292249332}{76959643321648124930797078489755516517859} a^{11} + \frac{11366726255400472498571937787656707579563}{76959643321648124930797078489755516517859} a^{10} + \frac{8540577329473574549021753268221936034448}{76959643321648124930797078489755516517859} a^{9} - \frac{7311701195189570149368781752557168659761}{76959643321648124930797078489755516517859} a^{8} - \frac{10234246652676005201651546390647610853254}{76959643321648124930797078489755516517859} a^{7} - \frac{21284772188538044065431299055870388829284}{76959643321648124930797078489755516517859} a^{6} + \frac{12933628336601246565026333496363527595703}{76959643321648124930797078489755516517859} a^{5} - \frac{21171280414614836780413960796960309267160}{76959643321648124930797078489755516517859} a^{4} - \frac{19166863278607590269507585294558581985004}{76959643321648124930797078489755516517859} a^{3} + \frac{26160791983891556997311749657940408084359}{76959643321648124930797078489755516517859} a^{2} + \frac{9080115343761059775258297026471853147562}{76959643321648124930797078489755516517859} a + \frac{16227548365347722695219537524526773440392}{76959643321648124930797078489755516517859}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{17649278037113435168931860429879036}{116429112438196860712249740529130887319} a^{15} + \frac{103334189534636651432667556432502056}{116429112438196860712249740529130887319} a^{14} - \frac{218248593754290574575985312109769416}{116429112438196860712249740529130887319} a^{13} - \frac{605832793152474554561462076084349772}{116429112438196860712249740529130887319} a^{12} - \frac{4566269038354533301402491152608079364}{116429112438196860712249740529130887319} a^{11} + \frac{2872068708590167332920988790019387604}{10584464767108805519295430957193717029} a^{10} + \frac{129955343755578678007795981625425392400}{116429112438196860712249740529130887319} a^{9} + \frac{12114432418633141886281571815977446401}{116429112438196860712249740529130887319} a^{8} - \frac{567645053239033298664709691629881734592}{116429112438196860712249740529130887319} a^{7} - \frac{3234976968716221302367262656260883889700}{116429112438196860712249740529130887319} a^{6} - \frac{10241014419562657591658180771890504918708}{116429112438196860712249740529130887319} a^{5} - \frac{19297996688814149271354788666918474945732}{116429112438196860712249740529130887319} a^{4} - \frac{33161512426760496676927190431446716499288}{116429112438196860712249740529130887319} a^{3} - \frac{4512599660633189784439270535639531882464}{10584464767108805519295430957193717029} a^{2} - \frac{41494568254619228339149114513981868671012}{116429112438196860712249740529130887319} a - \frac{12732717736162650001809500130870780999376}{116429112438196860712249740529130887319} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43936859.9817 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n781 are not computed |
| Character table for t16n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.58000.1, 4.0.11600.1, 8.0.3364000000.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |