Properties

Label 16.0.14266108229...8329.1
Degree $16$
Signature $[0, 8]$
Discriminant $13^{8}\cdot 53^{10}$
Root discriminant $43.12$
Ramified primes $13, 53$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $C_2^2.SD_{16}$ (as 16T163)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, -546, 18971, -43130, 50677, -49012, 40454, -26850, 14623, -6018, 1948, -697, 222, -63, 19, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + 19*x^14 - 63*x^13 + 222*x^12 - 697*x^11 + 1948*x^10 - 6018*x^9 + 14623*x^8 - 26850*x^7 + 40454*x^6 - 49012*x^5 + 50677*x^4 - 43130*x^3 + 18971*x^2 - 546*x + 9)
 
gp: K = bnfinit(x^16 - x^15 + 19*x^14 - 63*x^13 + 222*x^12 - 697*x^11 + 1948*x^10 - 6018*x^9 + 14623*x^8 - 26850*x^7 + 40454*x^6 - 49012*x^5 + 50677*x^4 - 43130*x^3 + 18971*x^2 - 546*x + 9, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} + 19 x^{14} - 63 x^{13} + 222 x^{12} - 697 x^{11} + 1948 x^{10} - 6018 x^{9} + 14623 x^{8} - 26850 x^{7} + 40454 x^{6} - 49012 x^{5} + 50677 x^{4} - 43130 x^{3} + 18971 x^{2} - 546 x + 9 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(142661082295126092995678329=13^{8}\cdot 53^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $43.12$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{1678127135377851252361047441057} a^{15} + \frac{166775960457924986611524494765}{1678127135377851252361047441057} a^{14} + \frac{58493579127488394019684144651}{559375711792617084120349147019} a^{13} - \frac{369955428122385188037240325496}{1678127135377851252361047441057} a^{12} - \frac{112695982222650462697270575062}{559375711792617084120349147019} a^{11} - \frac{828525849615210726090722975612}{1678127135377851252361047441057} a^{10} + \frac{804106653970349962900710114799}{1678127135377851252361047441057} a^{9} + \frac{298516252146895463035133808053}{1678127135377851252361047441057} a^{8} - \frac{249901371603723922037060211567}{559375711792617084120349147019} a^{7} - \frac{698007768440176641587957620073}{1678127135377851252361047441057} a^{6} - \frac{224109273954657651829829155888}{1678127135377851252361047441057} a^{5} + \frac{721149662350000616410729003576}{1678127135377851252361047441057} a^{4} + \frac{475062368137430686099581301406}{1678127135377851252361047441057} a^{3} - \frac{163701177892988743138605882488}{559375711792617084120349147019} a^{2} + \frac{38789638905859725487821472881}{559375711792617084120349147019} a + \frac{141544692322101911873197089451}{559375711792617084120349147019}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 683951.53722 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.SD_{16}$ (as 16T163):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 19 conjugacy class representatives for $C_2^2.SD_{16}$
Character table for $C_2^2.SD_{16}$

Intermediate fields

\(\Q(\sqrt{13}) \), 4.4.8957.1, 8.0.4252075997.1, 8.4.11944081475573.3, 8.4.225360027841.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
53Data not computed