Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} + 6249 x^{13} + 374025 x^{12} + 2734522 x^{11} + 2204199 x^{10} - 866862815 x^{9} - 3534340512 x^{8} - 33095688555 x^{7} + 681690587107 x^{6} - 1054372576950 x^{5} + 42709216585313 x^{4} - 183630121999979 x^{3} + 2159497799389466 x^{2} - 8100247836751296 x + 59350353865950707 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1424779743739660246627742650217447173810309649827289=67^{12}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1574.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{42} a^{13} - \frac{17}{42} a^{12} - \frac{2}{7} a^{11} + \frac{13}{42} a^{10} - \frac{5}{42} a^{9} + \frac{2}{21} a^{8} - \frac{17}{42} a^{7} + \frac{5}{42} a^{6} + \frac{8}{21} a^{5} + \frac{13}{42} a^{4} - \frac{1}{2} a^{3} - \frac{10}{21} a^{2} + \frac{3}{14} a + \frac{1}{6}$, $\frac{1}{1764} a^{14} + \frac{65}{252} a^{12} - \frac{695}{1764} a^{11} - \frac{73}{147} a^{10} - \frac{139}{588} a^{9} - \frac{235}{588} a^{8} - \frac{218}{441} a^{7} - \frac{361}{1764} a^{6} + \frac{13}{196} a^{5} - \frac{341}{882} a^{4} - \frac{461}{1764} a^{3} - \frac{793}{1764} a^{2} - \frac{191}{441} a + \frac{47}{252}$, $\frac{1}{21968463598442226823019487490094214751912529001675551247199048586227661735838212090661013371639882331365529655592} a^{15} - \frac{5151566058780484756349548406445148345368835864258282679575580732357104059401094515220828622237957528015115785}{21968463598442226823019487490094214751912529001675551247199048586227661735838212090661013371639882331365529655592} a^{14} + \frac{14840121864951238180896993813414821821238017984031274759522930032050880517577499607969450969723590521324850009}{3138351942634603831859926784299173535987504143096507321028435512318237390834030298665859053091411761623647093656} a^{13} + \frac{1406325720385164190085523477576686357348956916710238224657159770033523761515646655620627484237029341226542761801}{10984231799221113411509743745047107375956264500837775623599524293113830867919106045330506685819941165682764827796} a^{12} - \frac{285063790469659989568507570104210035764593121229109628274454768303512604285491559286422986485652156950355114335}{3138351942634603831859926784299173535987504143096507321028435512318237390834030298665859053091411761623647093656} a^{11} + \frac{486966560345519641670061539029196026883727750745847392038053316374258539865716943316861560531752887512034557}{1059895961713814195157016813339808691654003425564507707203119051779208845266474265000290122624590260595625496} a^{10} - \frac{10605770121187461903473272688512705505129025286423099966244417065195592498449187803200220398740967547185246143}{610235099956728522861652430280394854219792472268765312422195794061879492662172558073917038101107842537931379322} a^{9} - \frac{2821885705566309499777288063761016459588308184545164086739469509928206203183466065539358715334050800869719005499}{21968463598442226823019487490094214751912529001675551247199048586227661735838212090661013371639882331365529655592} a^{8} + \frac{4965635286173945437857553796315042103034663718359541832278222045634015114097336449120176031309372671916689477851}{21968463598442226823019487490094214751912529001675551247199048586227661735838212090661013371639882331365529655592} a^{7} + \frac{340141237665815101367273943648577801108585289771890366331800874549321953518676357433111412937317083002118306831}{1569175971317301915929963392149586767993752071548253660514217756159118695417015149332929526545705880811823546828} a^{6} - \frac{5625526680460504653287173562398095837150328782057405233834963881328306267884339657488330567522577710864570309319}{21968463598442226823019487490094214751912529001675551247199048586227661735838212090661013371639882331365529655592} a^{5} + \frac{7534320465252198977295338025337772103538058968735096065984785684614248258875912870999605548032389309376277130841}{21968463598442226823019487490094214751912529001675551247199048586227661735838212090661013371639882331365529655592} a^{4} + \frac{832105379884701353966555974990893641654358992563769293078214744710996376125219019467581411795278631473175472118}{2746057949805278352877435936261776843989066125209443905899881073278457716979776511332626671454985291420691206949} a^{3} + \frac{554538699398920024107155532599912829010441653176192727020790772707935873335384708029246845492934367356524723243}{3138351942634603831859926784299173535987504143096507321028435512318237390834030298665859053091411761623647093656} a^{2} + \frac{6126686280655644149241554479272322619089016071686834139793323674313656408683882452661280328059414867554316430429}{21968463598442226823019487490094214751912529001675551247199048586227661735838212090661013371639882331365529655592} a - \frac{235066234539380119037706243885791059723526350727385991363606759375926058784336428090009089809502082024842935267}{3138351942634603831859926784299173535987504143096507321028435512318237390834030298665859053091411761623647093656}$
Class group and class number
$C_{2}\times C_{4}\times C_{48}$, which has order $384$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62393778709200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-5963}) \), 4.0.3164605841.1, 8.0.891310981471327238009.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.8.6.2 | $x^{8} + 1541 x^{4} + 646416$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 67.8.6.2 | $x^{8} + 1541 x^{4} + 646416$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 89 | Data not computed | ||||||