Normalized defining polynomial
\( x^{16} - 3 x^{15} + 2 x^{14} + 8 x^{13} - 8 x^{12} - 307 x^{11} + 1296 x^{10} - 4138 x^{9} + 5343 x^{8} - 142 x^{7} - 1048 x^{6} + 35383 x^{5} + 10082 x^{4} - 29340 x^{3} + 15142 x^{2} - 3535 x + 343 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1411114225648575427835680561=11^{8}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{141} a^{13} - \frac{1}{47} a^{12} - \frac{5}{141} a^{11} - \frac{21}{47} a^{10} + \frac{7}{47} a^{9} - \frac{17}{141} a^{8} + \frac{12}{47} a^{7} + \frac{65}{141} a^{6} + \frac{28}{141} a^{5} + \frac{13}{47} a^{4} + \frac{61}{141} a^{3} - \frac{37}{141} a^{2} + \frac{17}{47} a - \frac{18}{47}$, $\frac{1}{382815} a^{14} + \frac{197}{382815} a^{13} - \frac{3599}{76563} a^{12} + \frac{39874}{382815} a^{11} + \frac{166162}{382815} a^{10} + \frac{250}{543} a^{9} - \frac{103333}{382815} a^{8} + \frac{45364}{127605} a^{7} - \frac{181646}{382815} a^{6} + \frac{181654}{382815} a^{5} - \frac{3414}{42535} a^{4} + \frac{11389}{25521} a^{3} + \frac{55349}{382815} a^{2} - \frac{16282}{76563} a - \frac{38201}{382815}$, $\frac{1}{332499552807003353625865095} a^{15} + \frac{7395901926330889676}{66499910561400670725173019} a^{14} + \frac{77170308832800574468472}{110833184269001117875288365} a^{13} - \frac{15797308282087683188984341}{332499552807003353625865095} a^{12} - \frac{10684874416254637613786042}{110833184269001117875288365} a^{11} + \frac{41435325032962961783521721}{332499552807003353625865095} a^{10} + \frac{45771038596439160380932697}{332499552807003353625865095} a^{9} + \frac{66180127686410733014739103}{332499552807003353625865095} a^{8} + \frac{30896446250850536821765649}{66499910561400670725173019} a^{7} - \frac{43358847166422547553139713}{110833184269001117875288365} a^{6} + \frac{158781520833888707675111816}{332499552807003353625865095} a^{5} + \frac{15212555039754813399319793}{36944394756333705958429455} a^{4} + \frac{2394772236288025878317347}{7074458570361773481401385} a^{3} - \frac{68102927287306780284884548}{332499552807003353625865095} a^{2} - \frac{338545197832436599912379}{36944394756333705958429455} a + \frac{13336602791297414560492121}{47499936115286193375123585}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3048431.55304 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 4.2.15059.1, 4.2.557183.1, 8.4.1015264874437.1, 8.0.1015264874437.1, 8.0.310452895489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |