Normalized defining polynomial
\( x^{16} - x^{15} - x^{14} + 12 x^{13} - 79 x^{12} + 484 x^{11} + 1411 x^{10} - 1635 x^{9} + 4582 x^{8} + 35484 x^{7} + 84259 x^{6} + 65558 x^{5} - 12802 x^{4} + 8304 x^{3} + 328913 x^{2} + 621070 x + 515524 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1410629873249683485564270561=3^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{15} a^{8} - \frac{2}{15} a^{7} - \frac{1}{15} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{2}{15} a^{2} - \frac{4}{15} a - \frac{2}{15}$, $\frac{1}{15} a^{9} - \frac{1}{3} a^{7} - \frac{7}{15} a^{6} - \frac{1}{3} a^{4} - \frac{1}{5} a^{3} + \frac{1}{3} a - \frac{4}{15}$, $\frac{1}{15} a^{10} - \frac{2}{15} a^{7} - \frac{1}{3} a^{6} + \frac{2}{15} a^{4} - \frac{1}{3} a^{3} + \frac{2}{5} a + \frac{1}{3}$, $\frac{1}{15} a^{11} + \frac{2}{5} a^{7} - \frac{2}{15} a^{6} + \frac{7}{15} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{5} a - \frac{4}{15}$, $\frac{1}{1830} a^{12} + \frac{13}{1830} a^{11} - \frac{9}{610} a^{10} - \frac{1}{366} a^{9} + \frac{14}{915} a^{8} - \frac{283}{610} a^{7} + \frac{54}{305} a^{6} - \frac{49}{1830} a^{5} + \frac{167}{610} a^{4} + \frac{10}{183} a^{3} + \frac{51}{305} a^{2} + \frac{139}{610} a - \frac{173}{915}$, $\frac{1}{1830} a^{13} + \frac{8}{305} a^{11} - \frac{2}{183} a^{10} - \frac{29}{1830} a^{9} + \frac{7}{1830} a^{8} + \frac{249}{610} a^{7} + \frac{25}{122} a^{6} + \frac{203}{915} a^{5} + \frac{35}{366} a^{4} + \frac{296}{915} a^{3} - \frac{511}{1830} a^{2} + \frac{91}{366} a - \frac{26}{183}$, $\frac{1}{40324050} a^{14} + \frac{4382}{20162025} a^{13} - \frac{59}{1550925} a^{12} + \frac{13948}{806481} a^{11} - \frac{651217}{40324050} a^{10} + \frac{194059}{40324050} a^{9} + \frac{1162037}{40324050} a^{8} + \frac{8615003}{40324050} a^{7} - \frac{7595752}{20162025} a^{6} + \frac{3737867}{8064810} a^{5} - \frac{4519027}{20162025} a^{4} + \frac{10377203}{40324050} a^{3} + \frac{47459}{620370} a^{2} - \frac{1962761}{4032405} a + \frac{3980389}{20162025}$, $\frac{1}{2690665782431778759759541650} a^{15} - \frac{24044583450911049139}{2690665782431778759759541650} a^{14} - \frac{76608541415091963611857}{896888594143926253253180550} a^{13} + \frac{41496638555555647467187}{2690665782431778759759541650} a^{12} + \frac{10974663618901294831913054}{1345332891215889379879770825} a^{11} - \frac{1154627366665467374925567}{59792572942928416883545370} a^{10} + \frac{824226958096666442373353}{89688859414392625325318055} a^{9} - \frac{693053320209080697784523}{44109275121832438684582650} a^{8} + \frac{8637690668871617924735939}{896888594143926253253180550} a^{7} - \frac{74893196890301046586676219}{1345332891215889379879770825} a^{6} + \frac{548881512274645229839372183}{1345332891215889379879770825} a^{5} + \frac{10412802637967095373782681}{179377718828785250650636110} a^{4} - \frac{17394044613686670833395373}{149481432357321042208863425} a^{3} - \frac{125436885388364756908265338}{269066578243177875975954165} a^{2} - \frac{160355932348610101823999}{2450515284546246593587925} a + \frac{567629619904720657841267}{3747445379431446740612175}$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{29105677301655691}{130115855816614863376350} a^{15} + \frac{257933919271321933}{65057927908307431688175} a^{14} - \frac{284088407104872946}{21685975969435810562725} a^{13} + \frac{2849462318596217147}{130115855816614863376350} a^{12} + \frac{204888063937102673}{21685975969435810562725} a^{11} - \frac{3985563973265440427}{13011585581661486337635} a^{10} + \frac{13894166299911984212}{4337195193887162112545} a^{9} - \frac{7231006898509041553}{130115855816614863376350} a^{8} - \frac{406192812673361319851}{43371951938871621125450} a^{7} + \frac{6855112743307157780297}{130115855816614863376350} a^{6} + \frac{11118540052797955381901}{130115855816614863376350} a^{5} + \frac{2390379380427262643473}{13011585581661486337635} a^{4} - \frac{2762666157668337066803}{43371951938871621125450} a^{3} + \frac{70999688606752367062}{867439038777432422509} a^{2} + \frac{78160357599159019556953}{130115855816614863376350} a + \frac{91892297875611360759}{60406618299264096275} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8147753.36594 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-183}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{-3}) \), 4.0.2042829.1 x2, 4.2.680943.1 x2, \(\Q(\sqrt{-3}, \sqrt{61})\), 8.0.615710703429.1 x2, 8.0.37558352909169.1 x2, 8.0.4173150323241.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |