Normalized defining polynomial
\( x^{16} - 6 x^{15} + 112 x^{14} - 530 x^{13} + 5619 x^{12} - 21510 x^{11} + 166080 x^{10} - 514575 x^{9} + 3172440 x^{8} - 7799164 x^{7} + 40179631 x^{6} - 74720456 x^{5} + 330143602 x^{4} - 418732795 x^{3} + 1613418232 x^{2} - 1059674139 x + 3605932049 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14098938471283305926093925390625=5^{8}\cdot 11^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(935=5\cdot 11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{935}(1,·)$, $\chi_{935}(769,·)$, $\chi_{935}(331,·)$, $\chi_{935}(716,·)$, $\chi_{935}(274,·)$, $\chi_{935}(659,·)$, $\chi_{935}(276,·)$, $\chi_{935}(661,·)$, $\chi_{935}(219,·)$, $\chi_{935}(604,·)$, $\chi_{935}(166,·)$, $\chi_{935}(934,·)$, $\chi_{935}(494,·)$, $\chi_{935}(111,·)$, $\chi_{935}(824,·)$, $\chi_{935}(441,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{5042482081315548164431726648730537810768791902166} a^{15} + \frac{620940958171901658440360038781130769842498886318}{2521241040657774082215863324365268905384395951083} a^{14} + \frac{140618657730798303441982385924783462992783097801}{2521241040657774082215863324365268905384395951083} a^{13} - \frac{622327037337099403485919885509481416653432204065}{5042482081315548164431726648730537810768791902166} a^{12} + \frac{1005434591596546403191665861708256834655043732206}{2521241040657774082215863324365268905384395951083} a^{11} - \frac{381909574097953355404549640533108253505076516466}{2521241040657774082215863324365268905384395951083} a^{10} - \frac{1460188123004357925312019605688098927944169686051}{5042482081315548164431726648730537810768791902166} a^{9} - \frac{539459016851580398941754562311440787516547806727}{2521241040657774082215863324365268905384395951083} a^{8} + \frac{570337291487685916211476737307101769334974017418}{2521241040657774082215863324365268905384395951083} a^{7} - \frac{961304870430019316355391117514005042814755739931}{5042482081315548164431726648730537810768791902166} a^{6} - \frac{868488662089467114518622131151234686968261869040}{2521241040657774082215863324365268905384395951083} a^{5} - \frac{182370591976077119390945465679224926829682777674}{2521241040657774082215863324365268905384395951083} a^{4} + \frac{917656315601680777251702672553403079485056465927}{5042482081315548164431726648730537810768791902166} a^{3} - \frac{1187807823696541804617829633820586429113837847992}{2521241040657774082215863324365268905384395951083} a^{2} - \frac{882787294926855988585482181132926550749811022301}{2521241040657774082215863324365268905384395951083} a + \frac{720154570243011873658385606326142837999921657228}{2521241040657774082215863324365268905384395951083}$
Class group and class number
$C_{126560}$, which has order $126560$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-935}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{17}, \sqrt{-55})\), 4.4.4913.1, 4.0.14861825.3, 8.0.220873842330625.9, 8.0.3754855319620625.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |