Normalized defining polynomial
\( x^{16} + 2066 x^{14} + 1805514 x^{12} + 874215952 x^{10} + 252657800140 x^{8} + 43587599577536 x^{6} + 4535677481540424 x^{4} + 266656622707871824 x^{2} + 7171989230975632144 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(140468608726897677774715983455580718320263888896=2^{36}\cdot 151^{8}\cdot 229^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $884.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 151, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{916} a^{10} + \frac{5}{916} a^{8} + \frac{39}{458} a^{6} + \frac{52}{229} a^{4} - \frac{62}{229} a^{2}$, $\frac{1}{916} a^{11} + \frac{5}{916} a^{9} + \frac{39}{458} a^{7} + \frac{52}{229} a^{5} - \frac{62}{229} a^{3}$, $\frac{1}{419528} a^{12} - \frac{28}{52441} a^{10} + \frac{5535}{209764} a^{8} - \frac{6157}{52441} a^{6} - \frac{14489}{104882} a^{4} - \frac{111}{229} a^{2}$, $\frac{1}{419528} a^{13} - \frac{28}{52441} a^{11} + \frac{5535}{209764} a^{9} - \frac{6157}{52441} a^{7} - \frac{14489}{104882} a^{5} - \frac{111}{229} a^{3}$, $\frac{1}{5030133307146171234817821718968829032459826940264} a^{14} - \frac{4554478517102981320246605078418758190903731}{5030133307146171234817821718968829032459826940264} a^{12} - \frac{165376103455076396310599317031637089579467703}{2515066653573085617408910859484414516229913470132} a^{10} - \frac{289789335340791075406721336798179637954828616367}{2515066653573085617408910859484414516229913470132} a^{8} - \frac{300911965254637241378346308864962011662178982463}{1257533326786542808704455429742207258114956735066} a^{6} - \frac{654366848052556418264510017998561632952674501}{2745705953682407879267369933934950345229163177} a^{4} - \frac{2369072209531428577195766842774030554788845}{11989982330490864101604235519366595394013813} a^{2} - \frac{10806409719855848313699469413985124455343}{52358001443191546295215002267976399100497}$, $\frac{1}{64219711932335168154919129886075040257414610546350488} a^{15} - \frac{7258075425158871242826025199366236551774586251}{16054927983083792038729782471518760064353652636587622} a^{13} + \frac{830589282795844772193036939240961593650184237695}{16054927983083792038729782471518760064353652636587622} a^{11} - \frac{1179963983682057024398828555763133925841521158452901}{32109855966167584077459564943037520128707305273175244} a^{9} - \frac{1636238033452806641016496850220322184011783969114410}{8027463991541896019364891235759380032176826318293811} a^{7} - \frac{7124457602417965533614338635022722095165028743516}{35054427910663301394606511946547511057540726280759} a^{5} + \frac{2110279246041428368509064387778581764463615822}{9004476730198638940304780875044313140904373563} a^{3} + \frac{244972282342973389266997296142447586266770120}{668454604425226471551009933955254687316045199} a$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21186211828700000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 768 |
| The 31 conjugacy class representatives for t16n1049 |
| Character table for t16n1049 is not computed |
Intermediate fields
| \(\Q(\sqrt{151}) \), 4.0.229.1, 8.0.6979410125322496.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 151 | Data not computed | ||||||
| 229 | Data not computed | ||||||