Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{14} + 13 x^{13} - 97 x^{12} + 245 x^{11} - 45 x^{10} - 1233 x^{9} + 4913 x^{8} - 11494 x^{7} + 19783 x^{6} - 23713 x^{5} + 19273 x^{4} - 6361 x^{3} + 637 x^{2} + 2236 x + 2197 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14030845564476355702701601=13^{4}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{4}{13} a^{11} - \frac{1}{13} a^{10} - \frac{6}{13} a^{9} - \frac{4}{13} a^{8} - \frac{2}{13} a^{7} + \frac{3}{13} a^{6} + \frac{1}{13} a^{5} - \frac{2}{13} a^{4} + \frac{6}{13} a^{3} + \frac{6}{13} a^{2}$, $\frac{1}{13} a^{13} - \frac{4}{13} a^{11} - \frac{2}{13} a^{10} - \frac{6}{13} a^{9} + \frac{1}{13} a^{8} - \frac{2}{13} a^{7} + \frac{2}{13} a^{6} - \frac{6}{13} a^{5} + \frac{1}{13} a^{4} - \frac{5}{13} a^{3} + \frac{2}{13} a^{2}$, $\frac{1}{507} a^{14} - \frac{1}{169} a^{13} - \frac{16}{507} a^{12} + \frac{61}{169} a^{11} + \frac{103}{507} a^{10} - \frac{4}{13} a^{9} + \frac{82}{507} a^{8} - \frac{215}{507} a^{7} - \frac{230}{507} a^{6} - \frac{227}{507} a^{5} + \frac{66}{169} a^{4} - \frac{27}{169} a^{3} + \frac{19}{39} a^{2} + \frac{4}{13} a - \frac{1}{3}$, $\frac{1}{20119848290547738034839069} a^{15} - \frac{13280455519053962804146}{20119848290547738034839069} a^{14} - \frac{630076859474128998194011}{20119848290547738034839069} a^{13} - \frac{39232370664210335545184}{20119848290547738034839069} a^{12} + \frac{6402514101455955110461150}{20119848290547738034839069} a^{11} - \frac{7180324060824761501432953}{20119848290547738034839069} a^{10} + \frac{6724725976093698817198699}{20119848290547738034839069} a^{9} + \frac{803180889097583559749105}{6706616096849246011613023} a^{8} - \frac{1300530861313787240744624}{6706616096849246011613023} a^{7} - \frac{1053883993634713337308453}{6706616096849246011613023} a^{6} - \frac{3041578655486061385355083}{20119848290547738034839069} a^{5} + \frac{1697188865378182851832734}{6706616096849246011613023} a^{4} - \frac{3394418524372765129061684}{20119848290547738034839069} a^{3} + \frac{322391758978121521283732}{1547680637734441387295313} a^{2} - \frac{226648296616520048882722}{1547680637734441387295313} a + \frac{2111453424886469250403}{9157873596061783356777}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 259606.919408 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.4.36517.1, 4.0.148877.1, 4.0.1935401.1, 8.4.70675038317.1 x2, 8.0.288136694677.1 x2, 8.0.3745777030801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |