Normalized defining polynomial
\( x^{16} + 2176 x^{14} + 1724014 x^{12} + 647707484 x^{10} + 123893802653 x^{8} + 12126531066564 x^{6} + 572663557369552 x^{4} + 10597769616281952 x^{2} + 29761106423144258 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1398629213800614161925350535491003636252672=2^{59}\cdot 113^{6}\cdot 1039^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $430.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113, 1039$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1039} a^{10} + \frac{98}{1039} a^{8} + \frac{313}{1039} a^{6} + \frac{79}{1039} a^{4} + \frac{446}{1039} a^{2}$, $\frac{1}{1039} a^{11} + \frac{98}{1039} a^{9} + \frac{313}{1039} a^{7} + \frac{79}{1039} a^{5} + \frac{446}{1039} a^{3}$, $\frac{1}{1079521} a^{12} + \frac{98}{1079521} a^{10} + \frac{440849}{1079521} a^{8} + \frac{423991}{1079521} a^{6} + \frac{251884}{1079521} a^{4} - \frac{205}{1039} a^{2}$, $\frac{1}{1079521} a^{13} + \frac{98}{1079521} a^{11} + \frac{440849}{1079521} a^{9} + \frac{423991}{1079521} a^{7} + \frac{251884}{1079521} a^{5} - \frac{205}{1039} a^{3}$, $\frac{1}{2596762256341757418934405759452814710925613626477933} a^{14} + \frac{817100842530983908885718600103028124346328900}{2596762256341757418934405759452814710925613626477933} a^{12} - \frac{942657696697911900896326853335394287960931744407}{2596762256341757418934405759452814710925613626477933} a^{10} - \frac{121449081952404068811703980140803133914223639015651}{2596762256341757418934405759452814710925613626477933} a^{8} - \frac{652214896600784575421810362238307569504967526485216}{2596762256341757418934405759452814710925613626477933} a^{6} - \frac{829625420287561738801065861212278006488958664791}{2499289948355878170292979556739956410900494346947} a^{4} + \frac{33138764819536190660437095097953569110638070}{2405476369928660414141462518517763629355624973} a^{2} - \frac{16342051402237379675681666613840153149}{20488355634064922995574901994921628432339}$, $\frac{1}{2596762256341757418934405759452814710925613626477933} a^{15} + \frac{817100842530983908885718600103028124346328900}{2596762256341757418934405759452814710925613626477933} a^{13} - \frac{942657696697911900896326853335394287960931744407}{2596762256341757418934405759452814710925613626477933} a^{11} - \frac{121449081952404068811703980140803133914223639015651}{2596762256341757418934405759452814710925613626477933} a^{9} - \frac{652214896600784575421810362238307569504967526485216}{2596762256341757418934405759452814710925613626477933} a^{7} - \frac{829625420287561738801065861212278006488958664791}{2499289948355878170292979556739956410900494346947} a^{5} + \frac{33138764819536190660437095097953569110638070}{2405476369928660414141462518517763629355624973} a^{3} - \frac{16342051402237379675681666613840153149}{20488355634064922995574901994921628432339} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{189604294}$, which has order $6067337408$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 112381.823916 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n942 |
| Character table for t16n942 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7232.1, 8.8.26778533888.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.29.76 | $x^{8} + 4 x^{6} + 12 x^{4} + 14$ | $8$ | $1$ | $29$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4, 19/4]$ |
| 2.8.30.21 | $x^{8} + 8 x^{7} + 30$ | $8$ | $1$ | $30$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4, 19/4]$ | |
| $113$ | 113.4.2.2 | $x^{4} - 113 x^{2} + 127690$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1039 | Data not computed | ||||||