Normalized defining polynomial
\( x^{16} - 2 x^{15} - 5 x^{14} + 16 x^{13} - 4 x^{12} - 38 x^{11} + 58 x^{10} + 2 x^{9} - 80 x^{8} + 66 x^{7} + 19 x^{6} - 54 x^{5} + 19 x^{4} + 10 x^{3} - 8 x^{2} + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(139314069504000000=2^{24}\cdot 3^{12}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{3}{7} a^{12} + \frac{3}{7} a^{11} + \frac{3}{7} a^{10} + \frac{2}{7} a^{9} - \frac{2}{7} a^{8} + \frac{2}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{2}{7} a^{2} - \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{77161} a^{15} - \frac{6}{11023} a^{14} - \frac{9348}{77161} a^{13} - \frac{11869}{77161} a^{12} - \frac{32302}{77161} a^{11} + \frac{24397}{77161} a^{10} - \frac{5798}{77161} a^{9} - \frac{21607}{77161} a^{8} + \frac{37475}{77161} a^{7} + \frac{22240}{77161} a^{6} - \frac{7741}{77161} a^{5} - \frac{10081}{77161} a^{4} + \frac{6431}{77161} a^{3} - \frac{14724}{77161} a^{2} - \frac{6290}{77161} a - \frac{3425}{11023}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{170}{73} a^{15} - \frac{2238}{511} a^{14} - \frac{826}{73} a^{13} + \frac{17669}{511} a^{12} - \frac{4880}{511} a^{11} - \frac{40258}{511} a^{10} + \frac{63704}{511} a^{9} - \frac{3336}{511} a^{8} - \frac{76954}{511} a^{7} + \frac{70771}{511} a^{6} + \frac{8402}{511} a^{5} - \frac{44903}{511} a^{4} + \frac{20886}{511} a^{3} + \frac{2747}{511} a^{2} - \frac{4206}{511} a + \frac{559}{511} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 164.264328049 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_4\times C_8):C_2$ (as 16T114):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_4\times C_8):C_2$ |
| Character table for $(C_4\times C_8):C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2}, \sqrt{-3})\), 8.0.8294400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.8.6.3 | $x^{8} + 25 x^{4} + 200$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |