Normalized defining polynomial
\( x^{16} + 560 x^{14} + 123928 x^{12} + 13756064 x^{10} + 800459128 x^{8} + 23105342400 x^{6} + 282979163040 x^{4} + 1397782730624 x^{2} + 2175581185568 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138870981735380017471819830544433646927872=2^{67}\cdot 7^{14}\cdot 193^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $372.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{28} a^{8}$, $\frac{1}{28} a^{9}$, $\frac{1}{10808} a^{10} + \frac{87}{5404} a^{8} - \frac{13}{386} a^{6} - \frac{45}{193} a^{4} - \frac{53}{193} a^{2}$, $\frac{1}{10808} a^{11} + \frac{87}{5404} a^{9} - \frac{13}{386} a^{7} - \frac{45}{193} a^{5} - \frac{53}{193} a^{3}$, $\frac{1}{6257832} a^{12} - \frac{53}{1564458} a^{10} - \frac{1300}{782229} a^{8} + \frac{17087}{223494} a^{6} + \frac{4275}{74498} a^{4} + \frac{151}{579} a^{2} - \frac{1}{3}$, $\frac{1}{12515664} a^{13} - \frac{53}{3128916} a^{11} - \frac{650}{782229} a^{9} + \frac{17087}{446988} a^{7} - \frac{16487}{74498} a^{5} - \frac{214}{579} a^{3} + \frac{1}{3} a$, $\frac{1}{132935180906188075044815571120} a^{14} + \frac{402803367914509740403}{9495370064727719646058255080} a^{12} + \frac{201242906914197046402801}{66467590453094037522407785560} a^{10} + \frac{153792512414151156854703259}{11077931742182339587067964260} a^{8} + \frac{15522613909303532934064463}{62469539899524471355646415} a^{6} - \frac{918562387240736678532089}{12299702156383056536344890} a^{4} - \frac{881849324761276810456}{10621504452835109271455} a^{2} - \frac{11816360641424957216}{165101105484483563805}$, $\frac{1}{132935180906188075044815571120} a^{15} - \frac{1660752434010657635271}{44311726968729358348271857040} a^{13} + \frac{442374126304906209725677}{22155863484364679174135928520} a^{11} + \frac{69856206974260679238556111}{4747685032363859823029127540} a^{9} - \frac{4965585462354999076045639}{124939079799048942711292830} a^{7} + \frac{901729769440971918960473}{6149851078191528268172445} a^{5} + \frac{9131664216942663786722}{31864513358505327814365} a^{3} - \frac{66850062469586145151}{165101105484483563805} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{933928}$, which has order $119542784$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1200202.11347 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 58 conjugacy class representatives for t16n1230 are not computed |
| Character table for t16n1230 is not computed |
Intermediate fields
| \(\Q(\sqrt{14}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{7})\), 8.8.3947645370368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.8.7.2 | $x^{8} - 7$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ |
| 7.8.7.2 | $x^{8} - 7$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ | |
| 193 | Data not computed | ||||||