Normalized defining polynomial
\( x^{16} + 560 x^{14} + 118048 x^{12} + 12132848 x^{10} + 644338394 x^{8} + 16821430696 x^{6} + 178643373076 x^{4} + 563622068800 x^{2} + 135973824098 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138870981735380017471819830544433646927872=2^{67}\cdot 7^{14}\cdot 193^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $372.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{7} a^{8}$, $\frac{1}{7} a^{9}$, $\frac{1}{1351} a^{10} - \frac{19}{1351} a^{8} + \frac{73}{193} a^{6} - \frac{69}{193} a^{4} + \frac{80}{193} a^{2}$, $\frac{1}{1351} a^{11} - \frac{19}{1351} a^{9} + \frac{73}{193} a^{7} - \frac{69}{193} a^{5} + \frac{80}{193} a^{3}$, $\frac{1}{146798309} a^{12} - \frac{40935}{146798309} a^{10} + \frac{6046815}{146798309} a^{8} + \frac{5520696}{20971187} a^{6} - \frac{5549056}{20971187} a^{4} - \frac{13639}{108659} a^{2} - \frac{98}{563}$, $\frac{1}{146798309} a^{13} - \frac{40935}{146798309} a^{11} + \frac{6046815}{146798309} a^{9} + \frac{5520696}{20971187} a^{7} - \frac{5549056}{20971187} a^{5} - \frac{13639}{108659} a^{3} - \frac{98}{563} a$, $\frac{1}{2242613406658832193880885985035} a^{14} - \frac{7549100316260298091697}{2242613406658832193880885985035} a^{12} - \frac{96186993911251289043045098}{2242613406658832193880885985035} a^{10} + \frac{95684976489357449089940669}{2309591561955542939115227585} a^{8} + \frac{47697882747992448474826318313}{320373343808404599125840855005} a^{6} - \frac{796972009922634665058282256}{1659965511960645591325600285} a^{4} + \frac{1421690071407491697848031}{8600857574925624825521245} a^{2} + \frac{9441470888769920937726}{44564028885624999095965}$, $\frac{1}{2242613406658832193880885985035} a^{15} - \frac{7549100316260298091697}{2242613406658832193880885985035} a^{13} - \frac{96186993911251289043045098}{2242613406658832193880885985035} a^{11} + \frac{95684976489357449089940669}{2309591561955542939115227585} a^{9} + \frac{47697882747992448474826318313}{320373343808404599125840855005} a^{7} - \frac{796972009922634665058282256}{1659965511960645591325600285} a^{5} + \frac{1421690071407491697848031}{8600857574925624825521245} a^{3} + \frac{9441470888769920937726}{44564028885624999095965} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2408144}$, which has order $154121216$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1200202.11347 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 52 conjugacy class representatives for t16n1188 are not computed |
| Character table for t16n1188 is not computed |
Intermediate fields
| \(\Q(\sqrt{14}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{7})\), 8.8.3947645370368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.8.7.2 | $x^{8} - 7$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ |
| 7.8.7.2 | $x^{8} - 7$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ | |
| 193 | Data not computed | ||||||